Broadband Ferromagnetic Resonance Spectroscopy: The "Swiss Army Knife" for Understanding Spin–Orbit Phenomena

Justin M. Shaw

National Institute of Standards and Technology, Boulder, CO 80305, USA

IEEE Magnetics Society

UPCOMING CONFERENCES

JAN 14, 2019 - JAN 18, 2019

MMM-INTERMAG JOINT CONFERENCE -WASHINGT...

JUN 24, 2019 - JUN 27, 2019 MAGNETIC FRONTIERS 2019

JUL 28, 2019 - AUG 1, 2019

MAGNONICS 2019

AUG 25, 2019 - AUG 29, 2019 IBCM 2019 #

LEARN MORE

AC @IEEEMagSoc

JOIN OUR

MAILING LIST

IEEE Magnetics Society announcement. IEEE Magnetics Society is a member society of IEEE Sensors Council. The IEEE Sensors Council has started a YouTube channel. Subscribe to the channel free of charge to stay up-to-date with all the latest videos. More: youtube.com/channel/UCdFj...

IEEE Sensors Council has started a YouTube Channel!

JOBS IN

MAGNETISM

JOIN IEEE MAGNETICS

THE IEEE MAGNETICS SOCIETY IS THE PREMIERE ORGANIZATION FOR PROFESSIONALS IN MAGNETICS RESEARCH AND TECHNOLOGY, MEMBERS ENJOY A WIDE RANGE OF BENEFITS.

SUMMER

SCHOO

ieeemagnetics.org

2019 DISTINGUISHED LECTURERS CHOSEN

Victorino Franco : Magnetocaloric Effect: From Energy Efficient Refrigeration to Fundamental Studies of Phase Transitions

Justin M. Shaw : Broadband Ferromagnetic Resonance Spectroscopy: The "Swiss Army Knife" for Understanding Spin-Orbit Phenomena

Hari Srikanth : Tuning Magnetic Anisotropy in Nanostructures for Biomedical and Electromagnetic Applications

Hyunsoo Yang : Spin-Orbit Technologies: From Magnetic Memory to Terahertz Generation

LEARN MORE

MAGNETICS SOCIETY JOURNALS

DISTINGUISHED LECTURE SERIES

Rio All Suites Hotel and Casino • November 4-8, 2019 • Las Vegas, Nevada

- Spin-Orbit Interaction
- Ferromagnetic Resonance Spectroscopy
- Anisotropy and Orbital Moments
- Damping and Spin-Pumping
- Spin-Orbit Torques

Spin-Orbit Interaction

"Classical" electron spin orbiting nucleus

 This effective B field leads to a splitting of energy levels → Fine Structure

• In solids the spin-orbit interaction is included as an addition to the Hamiltonian

$$H_{SO} = \xi_{SO} \vec{L} \cdot \vec{S}$$

Spin-Orbit Phenomena

- Spin-Orbit Interaction
- Ferromagnetic Resonance Spectroscopy
- Anisotropy and Orbital Moments
- Damping and Spin-Pumping
- Spin-Orbit Torques

Collective Spin Excitations

Ferromagnetic Resonance (FMR) Mode

All spin precess in phase

Other Spinwave (Magnon) Modes Non-zero phase relationship

Landau-Lifshitz Equation

National Institute of Standards and Technology

Lev Landau

Landau-Lifshitz equation

animations courtesy of Helmut Schultheiss

Evgeny Lifshitz

Landau-Lifshitz Equation

National Institute of Standards and Technology

Lev Landau

Landau-Lifshitz equation

animations courtesy of Helmut Schultheiss

Evgeny Lifshitz

Ferromagnetic Resonance (FMR)

Cavity Based **→** single frequency!

Srivastava, JAP 85 7841 (1999)

Constant Frequency, vary angle

Vector Network Analyzer FMR (VNA-FMR)

National Institute of **Standards and Technology**

Vector-network-analyzer

$$\chi(H,f) = \frac{M_{eff}(H - M_{eff})}{(H - M_{eff})^2 - H_{eff}^2 - i\Delta H(H - M_{eff})}$$

$$M_{eff}: \text{ Effective magnetization = } M_s - H_k$$

$$H_k: \text{ perpendicular anisotropy field}$$

$$M_s: \text{ Saturation magnetization}$$

$$\Delta H: \text{ Linewidth}$$

$$S_{21} = A e^{i\varphi} \chi(H,f) + background$$
Resonance Field, Linewidth
$$\int_{0.28}^{0.28} 0.28 \\ 0.26 \\ 0.24 \\ 0.22 \\ 0.26 \\ 0.24 \\ 0.22 \\ 0.26 \\ 0.28$$

14

VNA-FMR

- Spin-Orbit Interaction
- Ferromagnetic Resonance Spectroscopy
- Anisotropy and Orbital Moments
- Damping and Spin-Pumping
- Spin-Orbit Torques

Magnetic Anisotropy

Magnetic Anisotropy gives a preferred orientation to the spontaneous magnetization

Can originate from:

- Magnetocrystalline
- Interfaces
- Strain (Magnetostriction)
- Shape (Magnetostatic energy)

Why important?

Simple model of Anisotropy Energy

- ΔE magnetic anisotropy energy
 - $\xi_{\text{SO}} \quad \text{spin-orbit coupling constant}$
 - A prefactor (< 0.2) function of electronic structure
- μ_L orbital moment

How do we measure anisotropy?

• Angular Dependence of Resonance Field (H_{res})

Frequency (f) Dependence of Resonance Field (H_{res})

Kittel Equation:

EEE

Can include anisotropy terms of any symmetry (see Farle, RPP (1998) for review)

$$f(H_{res}) = \frac{g^{||}\mu_0\mu_B}{2\pi\hbar} \sqrt{(H_{res} + H_K)(H_{res} + M_{eff} + H_K)}$$

In-plane anisotropy field

Perpendicular anisotropy field

Effective Magnetization: $M_{eff} = M_s - H_K^{\perp}$

National Institute of Standards and Technology

19

g-factor relates the spin (μ_s) and orbital (μ_L) moments:

$$g = 2 + \frac{2\mu_L}{\mu_S}$$

Since $\mu_s >> \mu_L$, g is typically slightly larger than 2 in ferromagnets

• Frequency (f) Dependence of Resonance Field (H_{res})

Spectroscopic g-factor

$$f(H_{res}) = \frac{g \mu_0 \mu_B}{2\pi\hbar} \sqrt{(H_{res} + H_K)(H_{res} + M_{eff} + H_K)}$$

Effective Magnetization: $M_{eff} = M_s - H_K^{\perp}$

g-factor relates the spin (μ_s) and orbital (μ_L) moments:

 $g = 2 + \frac{2\mu_L}{\mu_S}$

Since $\mu_s >> \mu_L$, g is typically slightly larger than 2 in ferromagnets

<u>PROBLEM</u>: A small error in g leads to large error in μ_L

Consider g = 2.05 +/- 0.02 (1% error) \rightarrow 40% error in μ_L

PROBLEM: Reported values of g-factors can vary considerably

Permalloy	g–factor	Method	Frequency	Reference
Thickness			range	
5 –50 nm	2.109 ± 0.003	VNA-FMR with	4—60 GHz	This work
(extrapolated to		asymptotic		
bulk value)		analysis		
50 nm	2.20 ± 0.12	Einstein-de-Haas	—	[²⁷]
50 nm	2.0—2.1	PIMM	0—2 GHz	[²⁸]
50 nm	2.1	PIMM	0—3 GHz	[²⁹]
10 nm	2.05	PIMM	0—3 GHz	[²⁹]
bulk	2.12 ± 0.02	FMR	19.5 & 26 GHz	[³⁰]
bulk	2.12	Einstein-de-Haas	—	[³¹]
4—50 nm	2.08 ± 0.01	FMR	not reported	[³²]
bulk	2.08 ± 0.03	FMR	10 GHz	[9]
bulk	2.12 ± 0.03	FMR	24 GHz	[9]

g-factor: Asymptotic Analysis

 g_{fit} asymptotically approaches a value as $f_{up} \rightarrow c$

We make the assumption that the y-intercept (limit of $f_{up} \rightarrow \infty$) is the <u>intrinsic</u> value of g and M_{eff} .

Frequency (GHz)

- Field misalignment
- Higher order anisotropy terms
- Rotatable (history dependent) anisotropy
- Pinning of local spins
 - Defects
 - Interfaces
- Excessive fitting parameters
- Any missing or field dependent term in Kittel eqn.

•Anisotropy is tuned by varying the thickness.

J.M. Shaw, et al., Phys. Rev. B, 87, 054416 (2013)

EEE Application of g-factor analysis: CoFe/Ni

A test of Bruno's theory:

$$K = -\left(A\frac{\xi_{SO}N}{4V}\right)\frac{(\mu_L^{\perp} - \mu_L^{\parallel})}{\mu_B}$$

P. Bruno, PRB 39, 865 (1989)

- *K* anisotropy energy density
- spin-orbit coupling constant
- A prefactor due to electronic structure
- N number atoms per unit cell
- V volume of unit cell

Fit to the data: **A** = 0.097 ± 0.007

Compare to previous reports: **A** = 0.2 at RT, Au/Co/Au D. Weller, et al. PRL 75, 3752 (1995)

> **A = 0.1** at near 0 K, Ni/Pt MLs F. Wilhelm, et al. PRL 75, 3752 (1995)

A = 0.05 at near 0 K, Fe/V MLs

A.Anisimov, et al. PRL 82, 2390 (1999)

- Spin-Orbit Interaction
- Ferromagnetic Resonance Spectroscopy
- Anisotropy and Orbital Moments
- Damping and Spin-Pumping
- Spin-Orbit Torques

Why is damping important?

Data Storage & Magnetic Memory (STT-RAM)

2-terminal Spin-Transfer Torque (STT)

Spin-torque nano-oscillators

H.Schultheiss, HZDR

Spin current source

Nakayama, IEEE Trans Mag. (2010)

Magnonics and Spin Logic

Intrinsic Damping Theories

$$\frac{d\vec{M}}{dt} = -|\gamma|\mu_0(\vec{M}\times\vec{H}) - \frac{\alpha}{M_s} [\vec{M}\times(\vec{M}\times\vec{H})]$$

• Breathing Fermi surface model:

Kamberský, V. *Czechoslovak Journal of Physics B* **34**, 1111–1124 (1984) Kamberský, V. *Czechoslovak Journal of Physics B* **26**, 1366–1383 (1976) Kambersky, V. & Patton, C. E. *Phys. Rev. B* **11**, 2668–2672 (1975)

• Generalized torque correlation model:

Gilmore, K., Idzerda, Y. U. & Stiles, M. D. *Phys. Rev. Lett.* **99**, 027204 (2007) Thonig, D. & Henk, J. *New J. Phys.* **16**, 013032 (2014)

• Scattering theory:

Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. *Phys. Rev. Lett.* **101**, 037207 (2008) Liu, Y., Starikov, A. A., Yuan, Z. & Kelly, P. J. *Phys. Rev. B* **84**, 014412 (2011)

• Numerical realization of torque correlation via linear response:

Mankovsky, S., Ködderitzsch, D., Woltersdorf, G. & Ebert, H. Phys. Rev. B 87, 014430 (2013)

• First priciples calculations:

M. C. Hickey & J. S. Moodera, *Phys. Rev. Lett.* 102,137601 (2009) Ritwik Mondal,* Marco Berritta, and Peter M. Oppeneer, *Phys. Rev. B* **94**, 144419 (2016)

Intraband versus Interband

Intraband Interband "Breathing Fermi Surface" "Bubbling Fermi Surface" "Conductivity-like damping" t₂ "Resistivity-like damping" **▲**ε_μ(t) a) b) S(t-dtFe :011> excited electron intraband band α_{eff} SIN 10 10 10¹³ 10¹⁴ 10¹⁵ 10¹² τ^{-1} (s⁻¹) Inverse scattering time $(1/\tau)$ Temperature → Defect density → Gilmore and Stiles, PRB 81, 174414 (2010)

EE Intrinsic Damping: Critical Parameters

Critical Parameters affecting intrinsic damping:

 $N(E_F)$: Density of states at the Fermi energy, E_F ξ_{so}: Spin-Orbit Interaction τ: Spin scattering times

Origin of damping

$$\frac{d\vec{M}}{dt} = -|\gamma|\mu_0(\vec{M}\times\vec{H}) - \frac{\alpha}{M_s} \left[\vec{M}\times(\vec{M}\times\vec{H})\right]$$

- Originally just a phenomenological parameter
- Theory has worked to calculate damping parameter *α* from first principles

In reality, α includes **many** intrinsic and extrinsic sources and is not necessarily a constant

LL equation predicts linewidth is proportional to frequency

$$\Delta H = \frac{2h\alpha}{g\mu_0\mu_{\rm B}} f$$

However, that is not always observed

Linewidth Analysis

- □ Inhomogeneous Broadening
- Low-field losses
- **2**-magnon scattering
- **Spin-pumping**
- **Radiative Damping**
- □ k² Damping
- **Other Contributions**
 - **Eddy Currents**
 - **Slow relaxer**
 - Motional Narrowing
 - **Chiral Damping**
- Intrinsic Damping

- Many relaxation mechanisms and contributions to linewidth exist
- Careful separation and quantification of all mechanisms is needed to compare with theory

Point of emphasis: Broadband measurements are critical.

Inhomogeneous Linewidth

Heinrich, JAP, 57, 3690 (1985) Farle, Rep. Prog. Phys. 61, 755 (1998) McMichael, PRL 90, 227601 (2003)

Inhomogeneous Linewidth

□ Inhomogeneous Broadening

- **Low-field losses**
- **2**-magnon scattering
- □ Spin-pumping
- **Radiative Damping**
- □ k² Damping
- **Other Contributions**
 - **Eddy Currents**
 - **Slow relaxer**
 - Motional Narrowing
 - **Chiral Damping**
- **Intrinsic Damping**

Heinrich, JAP, 57, 3690 (1985) Farle, Rep. Prog. Phys. 61, 755 (1998) McMichael, PRL 90, 227601 (2003)

$$\Delta H = \frac{2h\alpha}{g\mu_0\mu_B} f + \Delta H_0$$

Frequency (GHz)

Low Field Loss

Inhomogeneous Broadening

Low-field losses

- 2-magnon scattering
- **Spin-pumping**
- **Radiative Damping**
- □ k² Damping
- **Other Contributions**
 - **Eddy Currents**
 - **Slow relaxer**
 - Motional Narrowing
 - **Chiral Damping**
- Intrinsic Damping

Linewidth Broadening

 $\Delta H_{low-field} = \frac{1}{f^n}$

Described by a power law fit

•Effect can extend to higher frequencies for some materials

36

2-Magnon Scattering

- Inhomogeneous Broadening
 Low-field losses
- 2-magnon scattering
- **Spin-pumping**
- **Radiative Damping**
- □ k² Damping
- **Other Contributions**
 - **Eddy Currents**
 - **Slow relaxer**
 - Motional Narrowing
 - **Chiral Damping**
- Intrinsic Damping

Sparks, Phys Rev. 122, 791 (1961) Hurben, JAP 83, 4344 (1989) McMichael, JAP 91, 8647 (2002) Lindner, PRB 68, 060102 (2003) Barsukov, PRB 84, 140410 (2011)

Can reduce/eliminate with out-of-plane geometry

Inhomogeneous Broadening

Spin-Pumping & Spin-Memory Loss

 $\alpha(t) = \alpha_{int} + g\mu_B \frac{\sigma}{A}$

t =thickness g = g-factor $g^{\uparrow\downarrow} = effective$ real part spin-mixing conductance y-intercept is the damping without spin-pumping contribution

Radiative Damping

National Institute of Standards and Technology

- □ Inhomogeneous Broadening
- Low-field losses
- **2**-magnon scattering
- **Spin-pumping**
- **Radiative Damping**
- □ k² Damping
- **Other Contributions**
 - **Eddy Currents**
 - **Slow relaxer**
 - Motional Narrowing
 - **Chiral Damping**
- **Intrinsic Damping**

30 nm Co₂₅Fe₇₅ Sample

M.Schoen, PRB, 92, 184417 (2015)

39

Inhomogeneous Broadening

- Low-field losses
- **2**-magnon scattering
- □ Spin-pumping
- **Radiative Damping**

□ k² Damping

- **Other Contributions**
 - **Eddy Currents**
 - **Slow relaxer**
 - Motional Narrowing
 - **Chiral Damping**
- □ Intrinsic Damping

Theory predicts a wavevector (k) dependence of damping $\propto |k|^2$

Y. Tserkovnyak Phys. Rev. B 79, 094415 (2009) S. Zhang Phys. Rev. Lett., 102, 086601 (2009)

→Generation of intralayer spin currents

Nembach PRL 110, 117201 (2013)

IEEE Other Sources of Linewidth and Damping

National Institute of Standards and Technology

□ Inhomogeneous Broadening

Low-field losses

2-magnon scattering

Spin-pumping

Radiative Damping

□ k² Damping

Other Contributions

Eddy Currents

Slow relaxer

Motional Narrowing

Chiral Damping

□ Intrinsic Damping

Van Vleck, PRL 11, 65 (1963). Woltersdorf, PRL 102, 257602 (2009) Nembach, PRB, 84, 054424 (2011)

A. Okada, PNAS, 114, 3815 (2017)

Eddy Currents

 δ = thickness ρ = resistivity C = correction factor

Generally not significant for metallic thin films < 20 nm

J. M. Lock, British JAP 17, 1645 (1966) C. Scheck, APL 88, 252510 (2006)

E. Jue, Nature Materials 15, 272 (2015)

• To compare with theory, we must account for or eliminate additional damping terms.

Why is LW analysis so important?

Prediction of ultra-low damping ($\alpha \approx 0.0005$) in CoFe

Mankovsky, PRB 87, 014430 (2013)

Schoen, Nature Physics 12, 839 (2016)

EEE

Why is LW analysis so important?

Damping is strongly controlled by the DOS at E_F

Schoen, Nature Physics 12, 839 (2016)

ARTICLE	APPLIED PHYSICS LETTERS 111, 132406 (2017)
Metallic ferromagnetic films with magnetic damping under 1.4×10^{-3}	Magnetic damping in poly-crystalline Co ₂₅ Fe ₇₅ : Ferromagnetic resonance vs. spin wave propagation experiments H. S. Körner, M. A. W. Schoen, T. Mayer, M. M. Decker, J. Stigloher, T. Weindler, T. N. G. Meier, M. Kronseder, and C. H. Back ^{a)}
Aidan J. Lee ¹ , Jack T. Brangham ¹ , Yang Cheng ¹ , Shane P. White ¹ , William T. Ruane ¹ , Bryan D. Esser ⁽³⁾ ² ,	Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
David W. McComb ⁺ , P. Chris Hammel' & Fengyuan Yango '	(Received 4 July 2017; accepted 2 September 2017; published online 27 September 2017)

DOS and damping

Alloying in Ge in Co₅₀Fe₅₀ enhances the "pseudo-gap" a moves it to the Fermi level

H.Lee, APL 95, 082502 (2009)

J.Chico, PRB, 93, 214439 (2016)

FIG. 7. Gilbert damping parameter α as a function of the disorder rates (x, y, z) and calculated with the two values of the lattice parameter.

Pradines, PRB, 95, 094425 (2017)

Mizukami, JAP, 105, 07D306 (2009)

How do we reduce spin pumping?

Why is LW analysis so important?

IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 20

Consider Relationship between Perpendicular Anisotropy (PMA) and Damping APPLIED PHYSICS LETTERS 98, 082501 (2011)

Tunable magnonic frequency and damping in [Co/Pd]₈ multilayers with variable Co layer thickness

S. Pal,¹ B. Rana,¹ O. Hellwig,² T. Thomson,² and A. Barman^{1,a}, Department of Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Sait Lake, Kolkada 700 098, India ²San Jose Research Center, Hilachi Global Storage Technologies, 3403 Yerba Buena Rd., San Jose, California 95135, USA

Applied Physics Express 4 (2011) 013005

DOI: 10.1143/APEX.4.013005

Gilbert Damping in Ni/Co Multilayer Films Exhibiting Large Perpendicular Anisotropy

Shigemi Mizukami*, Xianmin Zhang, Takahide Kubota, Hiroshi Naganuma¹, Mikihiko Oogane¹, Yasuo Ando¹, and Terunobu Miyazaki

WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ¹Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan Received November 17, 2010; accepted December 14, 2010; published online January 7, 2011

Time-Resolved Magnetization Dynamics and Damping Constant of Sputtered Co/Ni Multilayers

T. Kato¹, Y. Matsumoto¹, S. Okamoto², N. Kikuchi², O. Kitakami², N. Nishizawa³, S. Tsunashima⁴, and S. Iwata¹

¹Department of Quantum Engineering, Nagoya University, Nagoya 464-8603, Japan
²Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
³Department of Electrical Engineering and Computer Science, Nagoya University, Nagoya 464-8603, Japan
⁴Department of Research, Nagoya Industrial Science Research Institute, Nagoya 464-0819, Japan

APPLIED PHYSICS LETTERS 102, 102401 (2013) Observation of the intrinsic Gilbert damping constant in Co/Ni multilayers independent of the stack number with perpendicular anisotropy

Hyon-Seok Song,¹ Kyeong-Dong Lee,¹ Jeong-Woo Sohn,^{1,2} See-Hun Yang,³ Stuart S. P. Parkin,³ Chun-Yeol You,⁴ and Sung-Chul Shin^{1,2,a)} ¹Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea ²Department of Emerging Materials Science, DGIST, Daegu 711-873, South Korea ³IBM Research Division, Almaden Research Center, San Jose, California 95120, USA ⁴Department of Physics, Inha University, Incheon 402-751, South Korea

(Received 26 September 2012; accepted 26 February 2013; published online 11 March 2013)

APPLIED PHYSICS LETTERS 103, 022406 (2013)

Relationship between Gilbert damping and magneto-crystalline anisotropy in a Ti-buffered Co/Ni multilayer system

Hyon-Seok Song, ^{1,2} Kyeong-Dong Lee, ^{1,3} Jeong-Woo Sohn, ^{1,2} See-Hun Yang, ⁴ Stuart S. P. Parkin, ⁴ Chun-Yeol You, ⁵ and Sung-Chul Shin^{1,2,a}) ¹ Department of Physics and Center for Nanosphics of Spinronic Materials, Korea Advanced Institute of Science and Technology, Dacjeon 305-701, South Korea ²Department of Emerging Materials Science, DGIST, Daegu 711-873, South Korea ³Department of Materials Science and Engineering, KAIST, Daejeon, 305-701, South Korea ⁴IBM Research Division, Almaden Research Center, San Jose, California 95120, USA ⁵Department of Physics, Indu University, Incheon 402-751, South Korea

(Received 19 March 2013; accepted 21 June 2013; published online 9 July 2013)

"...a linear relation between the perpendicular magnetic anisotropy and α is established"

"No correlation of g with the increase in α ... is enhanced locally at the interface between the multilayer and buffer (capping) layer... may be **attributed to the spin-pumping** effect"

"The estimated α was found to be **independent** both on total thickness and anisotropy field of the multilayer..."

...the intrinsic Gilbert damping constant was found to be **independent of the perpendicular magnetic anisotropy**..."

"We find that the magneto-crystalline anisotropy and the Gilbert damping constant **show a linear relationship**."

Relationship between PMA and α ?

- No relationship between anisotropy and PMA
 - spin-orbit parameter does not vary

- Anisotropy results from orbital moment asymmetry NOT increased spin-orbit
 - → Independent of damping.

$$K = -\left(A\frac{\xi_{SO}N}{4V}\right)\frac{\Delta\mu_L}{\mu_B}$$

Co₉₀Fe₁₀/Ni Multilayers Anisotropy is tuned by varying the total thickness.

J.M. Shaw, APL 105, 062406 (2014)

- Spin-Orbit Interaction
- Ferromagnetic Resonance Spectroscopy
- Anisotropy and Orbital Moments
- Damping and Spin-Pumping
- Spin-Orbit Torques

Spin-Orbit Torques (SOT)

Heavy Metal

FM

Spin-Orbit Torques → transfer of angular momentum from lattice to carriers to magnetization

- Consider Ferromagnet (FM)/Heavy Metal interface
- Heavy metals have large spin-orbit coupling

Charge

• A charge current through the heavy metal can generate a transverse pure spin current

inverse Spin-Hall Effect inverse Rashba-Edelstein Effect

Spin

Spin-Hall Effect Rashba-Edelstein Effect

In reality, neither SHE or REE are purely "damping-like" or "field-like," but can be mixed.

V. Amin and M.Stiles PRB 94, 104420 (2016) V. Amin and M.Stiles PRB 94, 104419 (2016)

Why are SOT important?

Efficient switching of magnetic memory

2-terminal Spin-Transfer Torque (STT)

Shared read/write path:

- Large current density for write operations can damage tunnel barrier
- Read operations have finite probability of flipping the bit

3-terminal Spin-Orbit Torque (SOT)

Separate read and write paths

 Can apply large current density through write line without damaging MTJ

SOT Measurements Methods

Harmonic Method with Hall Cross

Hayashi et al. PRB 89, 144425 (2014)

${}^{\rm E}_{\rm S}$ -1.0 -1.5 -2.0 -2.0 JHV) 0.0 f=9 GHz P_{mw}=2 mW - -0.2 -2.5 Pv10/Pt5 -0.4 -3.0 -100 100 $\mu_0 H_0 (mT)$

Weiler, IEEE Magn. Lett. 5, 3700104 (2014)

Inverse SHE DC devices

Mosendz et al., PRB, 82, 214403 (2010)

Liu et al., PRL, 106 (2011)

...and now VNA-FMR...at the film level

M. Weiler, PRL 113, 157204 (2014)

Measured Inductances in VNA-FMR

Measured Inductances in NiFe/Pt

The inductance (*L*) of the sample arises from anything that produces a flux around the CPW

$$L = \frac{\Phi}{I_{\rm CPW}} = L_{\rm NiFe} + L_{Pt}(\omega)$$

1. Dipolar inductive coupling, ~ frequency-independent L_{NiFe} 2. Second-order inductive coupling ~ $i\omega$ (Faraday-induced currents in the NM) L_{NiFe} 3. Damping-like ~ ω (e.g. spin Hall effect)Spin-charge transduction,
a.k.a Spin-Orbit Torque (SOT) $L_{Pt}(\omega)$

Berger, PRB 97 094407 (2018)5

Measurement of SOT in NiFe/Pt

Inconsistency in spin diffusion length

If the pumped spin current is generating the charge current via the SHE, how can this be?

Application: Spin-Diffusion Length

PROBLEM: Inconsistency in Spin diffusion length in Pt

VNA-FMR → self-consistent, simultaneous measurement of spin-pumping and iSHE

Spin-pumping \rightarrow < 2 nm

iSHE measurements → 4-8 nm

Nakayama, PRB **85**, 144408 (2012) Feng, PRB **85**, 214423 (2012)

Berger, et al. PRB 97 094407 (2018)

- No rectification artifacts
 - No need for sample patterning
 - Phase sensitive separation of damping-like and field-like contributions
 - Simultaneous extraction of spin pumping contribution to damping
 - Identical method for both perpendicular and in-plane anisotropy FM materials

Acknowledgements

National Institute of Standards and Technology

NIST (Boulder)

Hans Nembach Tom Silva Martin Schoen (U.Manitoba) Mathias Weiler (WMI, Munich) Eric Edwards (IBM) Carl Boone Mike Schneider Matt Pufall Emilie Jue Andy Berger (SRS)

Uppsala University

Olle Eriksson Danny Thonig Erna Delczeg-Czirjak Yaroslav Kvashnin Olof "Charlie" Karis

T.U. Munich

Christian Back

Eindhoven University

Juriaan Lucassen Bert Koopmans

Summary

- Spin-orbit (SO) coupling generates a wealth of phenomena in magnetic systems
- Recent advances in VNA-FMR techniques enables access to measure many of these SO phenomena.
- Improved precision of VNA-FMR measurements advanced our understanding of many phenomena:
 - Precise measurement of orbital moment to compare with theory
 - Determination of intrinsic damping and quantification of other sources
 - Better understanding of factors that control damping
 - Quantification of SOT without device fabrication
 - Self-consistent separation of spin-pumping and spin-memory losses

