Tuning magnetic anisotropy in nanostructures for biomedical applications

IEEE
MAGNETIC:

bizka

::taler

... the story of anisotropy...

<mark>Hari Srikanth</mark>

sharihar@usf.edu http://faculty.cas.usf.edu/sharihar/

Professor of Physics Fellow – American Physical Society 2019 IEEE Magnetics Society Distinguished Lecturer

Group Leader – Functional Materials Laboratory

University of South Florida.

A Preeminent Research University

IEEE MAGNETICS

Our Vision

The Vision of the IEEE Magnetics Society is to be the leading international professional organization for magnetism and for related professionals throughout the world.

JOIN IEEEMAGNETICS!

THE IEEE MAGNETICS SOCIETY IS THE PREMIERE ORGANIZATION FOR PROFESSIONALS IN MAGNETICS RESEARCH AND TECHNOLOGY. MEMBERS ENJOY A WIDE RANGE OF BENEFITS. LEARN MORE

LOCAL CHAPTERS

VOLUNTEER

Our Mission

"The IEEE Magnetics Society promotes the advancement of science, technology, applications and training in magnetism. It fosters presentation and exchange of information among its members and within the global technical community, including education and training of young engineers and scientists. It seeks to nurture positive interactions between all national and regional societies acting in the field of magnetism. The Society maintains the highest standard of professionalism and technical competency."

www.ieeemagnetics.org

A Preeminent Research University

Welcome to Tampa and USF!

NIVERSITY OF SOUTH FLORIDA

 University of South Florida – 12th largest in the country – 47000 students

 USF Physics offers the <u>only Applied Physics Ph.D. program</u> in the State of Florida....PhD near the beach! (www.physics.usf.edu) 3

Functional Materials Lab@ USF Students

Dr. Hari Srikanth Professor

Dr. Manh-Huong Phan **Research Professor**

Postdocs

Dr. Raja Das (Asst. Prof. Phenikaa Univ, Vietnam) Dr. Javier Alonso (Asst. Prof. U. Cantabria, Spain) Dr. Hafsa Khurshid (Asst. Prof. American Univ of Sharjah, UAE)

Dr. Zohreh Nemati Dr. Vijaysankar Kalappattil Joshua Robles

Dr. Eleanor Clements

Richa Madhogaria Valery Ortiz Hana Nazari Yen Pham Jason Cardarelli (UG)

Our group's current focus areas....

- Magnetic Nanostructures
- Nanomedicine
- •Tunable Microwave Materials
- Spin Seebeck Effect
- Multicaloric oxides
- Helical magnets
- •Magnetic Refrigeration
- Giant Magnetoimpedance Magnetic Sensors

DC, AC Magnetization Transport measurements RF transverse susceptibility MCE **GMI** MOKE SAR for hyperthermia Spin Seebeck Effect Spin Hall Magnetoresistance

A Preeminent Research University

Outline

Magnetic anisotropy

Anisotropic nanoparticles for biomedical applications

Dancing with the SARs

Magnetic Anisotropy -basic idea

$U_{A} = K_{1}(\alpha_{1}^{2}\alpha_{2}^{2} + \alpha_{1}^{2}\alpha_{3}^{2} + \alpha_{2}^{2}\alpha_{3}^{2}) + K_{2}\alpha_{1}^{2}\alpha_{2}^{2}\alpha_{3}^{2}$ Cubic

Configuration

...And if you thought that's it.....think again!

Surface

Shape

Strain/Striction

Unidirectional/Exchange

Anisotropic nanoparticles are omnipresent!

Magnetotactic bacteria

Magnetite crystals in Allen Meteorite from Mars Ferrite crystals produced in plasma chamber at CMU

Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch

R. Swaminathan a,*, M.A. Willard b, M.E. McHenry a,*

^a Department of Materials Science and Engineering. Carnegic Mellon University, Patroburgh, PA 13213, United States ^b US Naral Research Laboratory, Physical Metallurgy Branch, Code 6320, Washington, DC 20375, United States Received 18 July 2005; received in revised form 9 October 2005; accepted 12 October 2005

Tuning the anisotropyNANORODSOCTOPODS

The high aspect ratio of the nanorods gives rise to an enhanced **shape anisotropy**.

By deforming the surface of the nanoparticles, the **surface anisotropy** can be increased.

Transverse susceptibility using a resonant RF TDO method

- Ultrastable Tunnel Diode Oscillator
- LC Tank circuit self-resonant at ~ 10 – 25 MHz
- Operates in a PPMS
- Sensitivity 1-10Hz in 25 MHz
- Temperature range: 2K < T < 300K
- Variable DC field: 0 < H < 7T

P. Poddar, G. T. Woods, S. Srinath and H. Srikanth, IEEE Trans. Nanotech. 4, 59 (2005)
P. Poddar, J. L. Wilson, H. Srikanth, D. F. Farrell, S. A. Majetich, PRB 68, 214409 (2003)

REVIEW OF SCIENTIFIC INSTRUMENTS

VOLUME 70, NUMBER 7

JULY 1999

Radio-frequency impedance measurements using a tunnel-diode oscillator technique

H. Srikanth,^{a)} J. Wiggins, and H. Rees Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148

 $\chi_T = \left(\frac{dM_x}{dH_z}\right)$

JOURNAL OF APPLIED PHYSICS 104, 063901 (2008)

Transverse susceptibility study of the effect of varying dipolar interactions on anisotropy peaks in a three-dimensional assembly of soft ferrite nanoparticles

Pankaj Poddar,^{1,2,a)} Marienette B. Morales,¹ Natalie A. Frey,¹ Shannon A. Morrison,³ Everett E. Carpenter, and Hariharan Srikanth^{1,b)}

Nanoparticles for biomedical applications

Targeted Drug Delivery

Magnetic Heating (Hyperthermia)

Cell Separation

MRI Image Enhancement

Magnetic hyperthermia for cancer treatment:

Using magnetic nanoparticles under an external AC magnetic field to target,

heat and destroy cancer cells.

- protein denaturation
- cell membrane restructuring
- cell deactivation
- (driven to apoptosis) around 40-45 °C

NanoTherm[™] Therapy

MagForce AG (Germany)

The standard measure of heating efficiency is the **Specific Absorption Rate (SAR)**:

SAR = Area \cdot f

Higher SAR → fewer nanoparticles

[5] D. Ortega and Q. Pankhurst, "Magnetic hyperthermia," Cambridge, Royal Society of Chemistry, 60-88 (2013).[6] R. Ivkov et al. Int. J. Hyperthermia, 29(8), 703-851 (2013).

Introduction: magnetic fluid hyperthermia

SLP: Specific Loss Power

SLP=f(f, H₀, Relaxation Mechanism)

Linear Response Theory (LRT)

- non-interacting single domain particles
- Linear susceptibility (H<<H_K)

$$P = \pi \mu_0 \chi_0 H_0^2 f \frac{2\pi f \tau}{1 + (2\pi f \tau)^2}$$
$$\frac{1}{\tau} = \frac{1}{\tau_B} + \frac{1}{\tau_N} \qquad \tau_B = \frac{3\eta V_H}{k_B T}$$
$$\tau_N = \tau_0 e^{K_e f f V/k_B T}$$

R. Rosensweig, J Magn Magn Mater, 252, 370-374 (2002).C. Dennis, R. Ivkov, Int J Hypertherm, 29(8), 715-729 (2013).

A Preeminent Research University

Magnetic Hyperthermia

I. Calorimetric method

II. AC Magnetometry method

$$SAR = rac{m_s}{m_n} C_p rac{\Delta T}{\Delta t}$$

 C_p : specific heat of the solution m_s : mass of the solvent m_n : mass of the nanoparticles $\Delta T/\Delta t$: initial slope of the heating curves 30 20 20 20 0 10 0 -10 -20 -30 -15 0 H_{app} (kA/m)

Eneko Garaio, Irati Rodrigo, Jose Angel Garcia $SAR = Area \times frequency$

> AC magnetometry is more accurate and reproducible than other methods.

Atkinson Brezovich limit: $H \ge f = 4.85 \ge 10^8 \text{ Am}^{-1}\text{Hz}$

Hea

A Preeminent Research University

Motivation

Anisotropy

Size

How to increase M_s and retain biocompatibility?

> Bulk saturation magnetization:

✓ Iron-oxide ----- 92 emu/g
 ✓ Iron ---- 220 emu/g

By creating core/shell nanostructures with a metallic core and an Fe oxide shell, it is possible to achieve nanoparticles with good biocompatibility and high saturation magnetization.

Synthesis of Core/Shell and Hollow Nanoparticles

Kirkendall Effect

A Preeminent Research University

Magnetic Hyperthermia

Z. Nemati,^a J. Alonso,^{ab} H. Khurshid,^a M. H. Phan^a and H. Srikanth^{*a}

Exchange coupled nanoparticles for hyperthermia

nature nanotechnology

Exchange-coupled magnetic nanoparticles for efficient heat induction

Jae-Hyun Lee¹, Jung-tak Jang¹, Jin-sil Choi¹, Seung Ho Moon¹, Seung-hyun Noh¹, Ji-wook Kim¹, Jin-Gyu Kim², II-Sun Kim³, Kook In Park³ and Jinwoo Cheon^{1*}

- A significant increase in the efficiency of magnetic thermal induction by nanoparticles taking the advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power.
- The optimized core-shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles.

Exchange coupled FeO/Fe₃O₄ nanoparticles

JOURNAL OF APPLIED PHYSICS 117, 17A337 (2015)

Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe₃O₄ nanoparticles

H. Khurshid,^{1,a)} J. Alonso,^{1,2} Z. Nemati,¹ M. H. Phan,¹ P. Mukherjee,¹ M. L. Fdez-Gubieda,^{2,3} J. M. Barandiarán,^{2,3} and H. Srikanth^{1,a)} ¹Department of Physics, University of South Florida, Tampa, Florida 33620, USA ²BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya, Derio 48160, Spain ³Depto. Electricidad y Electrónica, Universidad del País Vasco, Leioa 48940, Spain

Nanoparticle legos: Playing with shapes

The Fe₃O₄ nanoparticles were obtained by further annealing the asprepared exchange coupled FeO/ Fe₃O₄.

H. Khurshid et al. Nanoscale, 5, 7942 (2013).

A Preeminent Research University

Shape dependence: Dancing with the Stars...SARs!

spheres

cubes

octopods

Increased shape or surface anisotropy gives rise to higher heating rates: SAR (octopods) > SAR (cubes) > SAR (spheres)

'Chains' of improving SAR is higher in high aspect ratio nanostructures!

Chains of magnetosomes (magnetic nanoparticles produced by bacteria) show higher heating efficiency than isolated magnetosomes.

High aspect ratio nanostructures (chains, wires, rods...) can give rise to a notable increase of the SAR.

C. Martinez-Boubeta et al., *Scientific Reports* **3**, 1652 (2012); E. Alphandery et al., ACS. Nano. **3**, 1539–1547 (2009).

OMHDA

Fe₃O₄ nanorods with tunable aspect ratio

OA/HDA = 6.6

 $Fe(CO)_5$

A Preeminent Research University

Structural Characterization

The aspect ratio and volume of the nanorods were tuned.

511 '

60

422

50

20 (degree)

S1

S2

Nanoscale

Check for updates

Cite this: Nanoscale, 2017, 9, 7858

PAPER

311

222

40

400

С

Intensity (arb. unit)

200

30

	Length (nm)	Width (nm)	Aspect ratio
S1	41.0	7.0	5.8
S 2	65.0	57	11.0

View Article Online View Journal | View Issue

Epitaxial magnetite nanorods with enhanced room temperature magnetic anisotropy†

Sayan Chandra,‡^a Raja Das,‡^b Vijaysankar Kalappattil,^b Tatiana Eggers,^b Catalin Harnagea,^a Riad Nechache,^c Manh-Huong Phan,*^b Federico Rosei ^b*^a and Hariharan Srikanth ^b*^b

The

M(7

Inductive heating properties of Fe₃O₄ nanorods

Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia

Raja Das,^{*,†} Javier Alonso,^{†,‡} Zohreh Nemati Porshokouh,[†] Vijaysankar Kalappattil,[†] David Torres,[†] Manh-Huong Phan,^{*,†} Eneko Garaio,[§] José Ángel García,^{‡,||} Jose Luis Sanchez Llamazares,[⊥] and Hariharan Srikanth^{*,†} ions

rystalline.

26

Fe₃O₄/CoFe₂O₄ Core/Shell Nanoparticles

SAR in different viscous environments

SAR Data: 10nm CoFe₂O₄ @ Fe₃O₄

H (Oe)	Hexane	Water	Agar
400	61.990	83.837	47.125
600	121.01	148.447	103.63
800	158.97	246.18	144.51

A Preeminent Research University

Internalization of Fe₃O₄ nanorods in the macrophages

Cells were kept at 37 °C, 5% CO₂ Total volume: 3.5 ml/well 5×10^5 cells/ml 30 µg nanorods /ml

After 2 h

After 24 h

In vitro experiments were carried out by Rosa Martínez, David Muñoz and Eneko Garaio at the University of Basque Country (UPV/EHU)

Magneto-mechanical cancer cells destruction

U87 Glioma cells with gold-plated vortex Au/NiFe/Au

1 image / 10 min – total 48h

UNIVERSITÉ Grenoble

This video was taken during a toxicity test for the particles, without applied field. Here, the amount of particles is maximum. Viability of the cells is assessed after 48h incubation with the particles. Cells death would be achieved by applying a 20 Hz rotating field.

Credits for the video:

Cécile Naud, Thèse de Doctorat (Univ. Grenoble Alpes, 2019)

If one paper cited:

"Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane"

Selma Leulmi, Xavier Chauchet, Mélissa Morcrette, Guillermo Ortiz, Hélène Joisten, Philippe Sabon, Thierry Livache, Yanxia Hou, Marie Carrière, Stéphane Lequien, and Bernard Dieny,

Nanoscale 7, 15904 (2015). doi 10.1039/c5nr03518j

Effect of Hyperthermia

- The incorporation of nanorods into cells slows down their growth.
- Application of AMF generates a 40% decrease in their population after 24 h.
- These results are very promising for magnetic hyperthermia treatment of cancer.

Magneto-mechanical destruction of cancer cells

Kim et al. Nature Materials 9, 165 (2010) Argonne group (Ryzkhova, Novosad)

Mansell et al. Scientific Reports 7, 4257 (2017) Vemulkar et al. APL 110, 042402 (2017) Cambridge group (Russell Cowburn)

- Microdiscs with vortex states
- Synthetic antiferromagnetic discs
- Low field/frequency actuation induced torque

FLASH NEWS!

MagForce AG Receives FDA Investigational Device **Exemption Approval to Conduct a Clinical Trial with** NanoTherm Therapy as Focal Ablation Treatment for **Intermediate Risk Prostate Cancer** February 10, 2018 05:55 AM Eastern Standard Time BERLIN & CARSON CITY, Nev.--(BUSINESS WIRE)--MagForce AG (Frankfurt, Scale, XETRA: MF6, ISIN: DE000A0HGQF5), a leading medical device company in the field of nanomedicine focused on oncology, together with its subsidiary MagForce USA, Inc., announces that it has received U.S. Food and Drug Administration (FDA) Investigational Device Exemption (IDE) approval to conduct a clinical trial with NanoTherm therapy as focal ablation treatment for intermediate risk prostate cancer.

OPEN ACCESS

J. Phys. D: Appl. Phys. 50 (2017) 363001 (33pp)

Journal of Physics D: Applied Physics

https://doi.org/10.1088/1361-6463/aa81a1

Topical Review

The 2017 Magnetism Roadmap

D Sander¹, S O Valenzuela^{2,3}, D Makarov⁴, C H Marrows⁵, E E Fullerton⁶, P Fischer^{7,8}, J McCord⁹, P Vavassori^{10,11}, S Mangin¹², P Pirro¹³, B Hillebrands¹³, A D Kent¹⁴, T Jungwirth^{15,16}, O Gutfleisch¹⁷, C G Kim¹⁸ and A Berger¹⁰

¹ Max Planck Institute of Microstructure Physics, Halle, Germany

² ICN2 Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute

of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain

³ ICREA Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona, Spain

⁴ Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany

⁵ School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

⁶ Center for Memory and Recording Research, University of California, San Diego, La Jolla,

CA 92093-0401, United States of America

⁷ Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America

- ⁸ Physics Department, University of California, Santa Cruz, CA 94056, United States of America
- ⁹ Kiel University, Institute for Materials Science, Kaiserstr. 2, 24143 Kiel, Germany
- ¹⁰ CIC nanoGUNE, E-20018 Donostia-San Sebastian, Spain
- ¹¹ IKERBASQUE, The Basque Foundation for Science, E-48013 Bilbao, Spain
- ¹² Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, France

¹³ Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

- ¹⁴ Department of Physics, New York University, New York 10003, United States of America
- ¹⁵ Institute of Physics, Czech Academy of Sciences, Czech Republic
- ¹⁶ University of Nottingham, Nottingham, United Kingdom
- ¹⁷ Material Science, TU Darmstadt, Darmstadt, Germany
- ¹⁸ Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea

AP Journal of Applied Physics

Why publish with us:

HIGHLY READ

5.9+ Million Downloads in 2017

RAPID PUBLICATION

Time to first decision: 40

Days

GLOBAL REACH

315K+ Researchers Monthly

AUTHOR-FRIENDLY POLICIES

Author retains copyright Liberal reuse policy No page charges

INVESTED IN THE FUTURE OF SCIENCE

Not-for-profit publisher supporting scientific and educational programs

The future of applied physics starts here

Submit today at **jap.peerx-press.org**

jap.aip.org

Summary

Functionalized magnetic nanoparticles with variable size and shapes for nanomedicine applications The importance of anisotropy and its influence on functional response in hyperthermia and tunable RF device applications

Nano size that is....and shapes, surfaces and interfaces

A Preeminent Research University

Some sample fabrication and characterization facilities at USF Functional Materials Laboratory

40

Advanced DC, AC, RF magnetization, transport and thermal measurements @USF Functional Materials Laboratory

The USF FML group and IEEE Magnetics Society thanks you for your attention...

FML group seen here doing what we love the most...discussing research in bars and coffee shops...

Yep...we put the 'fun' in dysfunctional

Schemes for functional material structures for tunable EM applications (Magnetoelectric, multiferroic, meta-materials...)

systems can range from ceramics to polymers

Fig. 2. Influence of the particle size on the microwave absorption: (1) 5 μ m, (2) 65 nm.

A Preeminent Research University

'Suck-cessful' synthesis of nano popsicles

IOP PUBLISHING

Nanotechnology 20 (2009) 485604 (7pp)

doi:10.1088/0957-4484/20/48/485604

Carbon nanostraws: nanotubes filled with superparamagnetic nanoparticles

Susmita Pal, Sayan Chandra, Manh-Huong Phan, Pritish Mukherjee and Hariharan Srikanth¹

Integrated Functional Materials Group, Department of Physics, University of South Florida, Tampa, FL 33620, USA

Two-Step Anodization Process

Ester Palmero and Manuel Vazquez (ICM-CSIC, Madrid)

XRD and TEM for NFO and NFO-Filled CNTs from custom templates

~80 nm diameter mulit-walled CNTs

7 nm NiFe₂O₄–Filled CNTs

A Preeminent Research University

The aggravation of agglomeration....

Controlled dispersion and assembly of nanoparticles within a polymer matrix is a challenge in materials processing and manufacturing

2.35 2. 2.25 2.2 T 0. 0. 0.5

Soft Materials Structure and Dynamics, ed J. Dutcher and A. Marangoni <u>(Marcel Decker, New York NY, 2005)</u>

- Clustering is a common problem in polymer composites
- Molecular dynamics simulations predict interaction conditions favoring uniform dispersion or formation of larger clusters Can we control this process?

A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, Springer, New York 2003.

T. Desai, P. Keblinski, S. K. Kumar, J. Chem. Phys. 2005, 122, 134 910.

Yes! Countering steric forces with surface charges on nanoparticles

Cross-sectional TEM of Bilayer

A Preeminent Research University

ZFC and FC curves of Fe₃O₄ nanoparticles

ZFC and FC curves of particles in PMMA

First demonstration of superparamagnetic polymer nanocomposite films

Superparamagnetic Polymer Nanocomposites with Uniform Fe₃O₄ Nanoparticle Dispersions**

By James Gass, Pankaj Poddar, James Almand, Sanyadanam Srinath, and Hariharan Srikanth*

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Adv. Funct. Mater. 2006, 16, 71–75

A Preeminent Research University

Microwave Tunability

In collaboration with microwave gurus Jing Wang and Tom Weller (EE, USF)

Resonator in Electromagnet

Cavity Resonator

Q-factor, Power loss and Resonance Frequency

Morales, C., et al., Tunable Magneto-Dielectric Polymer Nanocomposites for Microwave Applications. leee Transactions on Microwave Theory and Techniques, 2011. **59**(2): p. 302-310.

A Preeminent Research University

Microstrip patch antenna fabrication and performance

Antenna Design	Resonance Frequency (GHz)	Bandwidth (MHz)	Maximum Gain (dBi)	Efficiency	Area (mm²)	Miniaturization % /Factor
PDMS	3.931	185 (4.7%)	5.095	50.74%	594.05 (27.25x21.8)	
PDMS- Fe ₃ O ₄ 80% PNC	3.298	245 (7.45%)	2.12	31.28%	312.05 (19.75x15.8)	» 57% / 2.3
PDMS- Fe ₃ O ₄ 50% PNC	3.986	244 (6.12%)	4.063	44.10%	312.05 (19.75x15.8)	» 47.5% / 1.9
PDMS- Fe ₃ O ₄ 30% PNC	4.585	230 (5.02%)	5.085	40.49%	312.05 (19.75x15.8)	» 39.5 / 1.65

