

Spin-orbit technologies: from memory switching to THz generation

Hyunsoo Yang

Department of Electrical and Computer Engineering National University of Singapore

15 Feb 2019

UPCOMING CONFERENCES

JUN 24, 2019 - JUN 27, 2019 MAGNETIC FRONTIERS 2019

JUL 28, 2019 - AUG 1, 2019 MAGNONICS 2019

AUG 25, 2019 - AUG 29, 2019 IBCM 2019 #

NOV 4, 2019 - NOV 8, 2019 2019 CONFERENCE ON MAGNETISM AND MAGNETI...

IEEE MagSoc MAC @IEEEMagSoc

> A movie about "Magnetism and Magnetics Technology in the 21st Century" developed by @IEEEMagSoc

Full movie: goo.gl/zEWwjY

JOIN IEEE MAGNETICS

THE IEEE MAGNETICS SOCIETY IS THE PREMIERE ORGANIZATION FOR PROFESSIONALS IN MAGNETICS RESEARCH AND TECHNOLOGY. MEMBERS ENJOY A WIDE RANGE OF BENEFITS.

LEARN MORE

LOCAL CHAPTERS

VOLUNTEER

LEARN MORE

Charge electronics \rightarrow Spin electronics

Information transfer

= electron transfer

Spin wave

MTJ memory

Information processing

= processing electron flow

Spin transistor

of Singapori

Charge transfer and processing energy loss is huge → All spin electronics

Spin switches/filters for spin logic devices

Is there any better component in spintronics?

of Singapore

Spin wave nonreciprocity

Well known phenomenon [e.g. PRB 77, 214411 (2008), APL 95, 112509 (2009), APL 97, 022508 (2010)]

J. Phys. D: Appl. Phys. 47, 385002 (2014), Curr. Appl. Phys. 14, S129 (2014)

Sci. Rep. 3, 3160 (2013), APL 107, 022401 (2015)

Spin wave nonreciprocity in bilayer (Ta/Py)

Giant nonreciprocal emission of spin wave in Ta (t nm)/Py

- The amplitude at -258 Oe is higher than that at +258 Oe in the device for 0 < t_{Ta} < 2.7 nm. - However, the amplitude at +258 Oe is higher than that at -258 Oe for 4.6 nm < t_{Ta} < 10 nm

Sci. Adv. 2, e1501892 (2016)

k-dependent enhanced damping

Future applications of magnetic tunnel junctions

- Replace eFlash in smart cards.
- Replace SRAM in wearable chips.
- Apply to bio-compatible chips

from google images

Understanding of strain effect in MTJs is important!

Flexible MTJs transfer process

Adv. Mat. 28, 4983 (2016)

TMR value is enhanced on PET due to tensile strain in the structure. Lattice mismatch of ~4% b/w MgO and ferromagnets

Flexible MTJs on various materials

Adv. Mat. 28, 4983 (2016)

Spin torque MRAM

Spin deflection due to spin-orbit coupling

• Trajectory of a spinning ball depends on the direction of its spin.

 $\textbf{J}_{\textbf{c}} \perp \textbf{J}_{\textbf{s}} \perp \sigma$

 $\mathbf{J_{c}} \parallel \sigma \mathbf{\rightarrow} \mathbf{J_{s}=0}$

 Electrons experience a transverse deflection depending on spin direction due to spin-orbit coupling.

Spin-charge interconversion: foundation of spin-orbitronics

Spin Hall and Inverse Spin Galvanic effects

Spin Hall effect

- Spin orbit coupling in the bulk of nonmagnet.
- Can be from intrinsic or extrinsic (impurities).
- Quantified by spin Hall angle (SHA or θ_{sh})

Rashba-Edelstein effect

- Structures with broken inversion symmetry
- Interfacial spin orbit coupling.
- Depends on the nature of the interface.
- Quantified by Rashba coefficient (∞ magnitude of E=-∇V)

$$\hat{H}_{\rm so} = \xi \hat{\boldsymbol{\sigma}} \cdot (\nabla V \times \hat{\mathbf{p}})$$

Theory: D'yakanov and Perel (1971), Hirsch (1999), Edelstein (2000), Zhang (2000), Murakami, Nagaosa, Zhang (2003), Sinova *et al.* (2004),...

Experiments: (semiconductors) Ganichev *et al.* (2002), Kato *et al.* (2004), Wunderlich *et al.* (2005) (metals) Valenzuela and Tinkham (2006), Saitoh *et al.* (2006), Kimura *et al.* (2007).

Observation of spin Hall effect in semiconductors

Magneto optical Kerr imaging GaAs, T = 30 K

Imaging is believing! Easy for semiconductors, but difficult for metals.

of Singapore

Scanning photovoltage microscope with currents

- DC current is applied to induce spin accumulation.
- Circularly polarized light normally incidents on the sample.
- ✤ Magnetic circular dichroism.
- Photovoltages are detected by lock-in amp.
- Piezo sample stage enables mapping.

 $V_{photovoltage} = V_{RCP} - V_{LCP}$

RCP light excites spin up electron, while LCP light excites spin down electron.

- $V_{photovoltage} > 0 \rightarrow \text{local spin direction is spin down.}$
- $V_{photovoltage} < 0 \rightarrow$ local spin direction is spin up.

Nat. Comm. 9, 2492 (2018); Adv. Opt. Mat. 4, 1642 (2016)

Negligible spin accumulation in Cu

Bias dc current of 1 mA ~ 10^{6} A cm⁻². No signal regardless of currents.

Nat. Comm. 9, 2492 (2018)

Accumulated spin imaging in Pt and Bi₂Se₃

- Sign switches in opposite edges and with reversing currents.
- Both semiconductors and metals work.
- Can extract spin Hall angle and spin lifetime without a ferromagnet.

Nat. Comm. 9, 2492 (2018)

Spin-orbit torque switching in metallic structures

In-plane currents can switch the magnetization (spin-orbit torques).

Spin-orbit torque has paved a novel way to manipulate the magnetization.

Spin orbit torque effective fields (H_L and H_T)

-Spins are generated in a nonmagnetic metal.

-Longitudinal field (H_1) along the y x m direction

-Transverse field (H_T) along the y direction

-Ferromagnet experiences a torque due to accumulated spins.

-In presence of SOT, the modified Landau-Lifshitz-Gilbert (LLG) equation

 $\partial_t \mathbf{m} = -\gamma \mu_0 \mathbf{m} \times \mathbf{H}_{eff} + \alpha \mathbf{m} \times \partial_t \mathbf{m} + \boldsymbol{\tau}_{L} + \boldsymbol{\tau}_{T} \qquad \boldsymbol{\tau}_{L}$

$$\boldsymbol{\tau}_{\mathrm{L}} = -\gamma \mu_0 \mathbf{m} \times \mathbf{H}_{\mathrm{L}}$$

 $\boldsymbol{\tau}_{\mathrm{T}} = -\gamma \mu_{0} \mathbf{m} \times \mathbf{H}_{\mathrm{T}}$

Review: Adv. Mat. 30, 1705699 (2018)

Characterization of SOT - Second harmonic signal

 In perpendicularly magnetized systems, a low frequency AC current is passed

 \rightarrow Oscillating torques (SOT) on the magnet

 \rightarrow Anomalous Hall resistance oscillates at same frequency.

$$V_{H} = I_{ac}R_{ac} = I_{0}\sin\omega t(R_{H} + \Delta R_{H}\sin\omega t) = I_{0}R_{H}\sin\omega t + \frac{I_{0}\Delta R_{H}}{2}$$

Pi et al., Appl. Phys. Lett. 97, 162507 (2010)

 $I_0 \Delta R_H \cos 2\omega t$

SOT effective field measurements (2nd harmonic)

SOT effective field : $H_L = \hbar \theta_{SH} |j_e| / (2/e/M_S t_F)$

Spin currents can be very large, as the electron can interact with the FM many times (lateral scattering)

$$\theta_{SH} = \frac{\sigma_S}{\sigma_C} \qquad \qquad \frac{I_S}{I_C} = \theta_{SH} \frac{l}{t} \qquad I >> t$$

SOT effective fields (H_L and H_T) can be connected to θ_{SH} $\theta_{SH} = (2e/\hbar)M_S t_F H_{L,T}$

STT

Review: Adv. Mat. 30, 1705699 (2018)

Spin torque ferromagnetic resonance (ST-FMR)

$$\frac{\partial \mathbf{m}}{\partial t} = -\gamma \mu_0 \mathbf{m} \times \mathbf{H}_{eff} + \alpha \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t} + \mathbf{\tau}_L + \mathbf{\tau}_T \qquad \text{Use SOTs} \\ \text{instead of } \mathbf{h}_{rf}$$

- AC current $I_{ac}(t) \rightarrow$ AC spin orbit torques
- Magnetization oscillation → Resistance oscillation R(t)
- Spin rectification: DC voltage V_{mix} is detected as ST-FMR signal
- For a given frequency f of I_{ac} , H_{ext} is swept to meet the resonance

• Opposite switching polarity in Pt and Ta \rightarrow opposite θ_{SH}

Switching current in Ta is smaller than Pt nanowires

Sci. Rep. 4, 4491 (2014); APL 105, 152412 (2014); APL 103, 232408 (2013)

$$I_{c} \approx \frac{e}{h} \left(\frac{M_{S} t_{FM} A_{HM}}{\theta_{SH}} \right) H_{eff}$$
47

Spin orbit torque (SOT) engineering

Search for large spin Hall angle (θ_{SH}) or effective fields (H_L and H_T)

Review: Appl. Phys. Rev. 5, 031107 (2018)

Spin Hall angle is a material parameter

Z: atomic number

Number of d-electrons: Hund's rules

PRL 112, 197201 (2014), PRB 77, 165117 (2008), PRB 83, 174405 (2011)

Heavy metals \rightarrow strong spin orbit coupling Luckily some CMOS compatible materials show large spin Hall angles

Is θ_{SH} a fixed value for a given material?

Reported θ_{SH} from Pt using various methods

- Relationship of $\theta_{SH}\lambda_S \sim 0.13 \text{ nm}$ [0.18 nm, PRL 112, 106602 (2014)]
- Large resistivity \rightarrow large θ_{SH} due to spin dependent scattering
- We can engineer θ_{SH} by changing σ_{Pt}
- Recent systematic measurements: Sagasta et al., PRB 94, 060412 (2016)
 APL 105, 152412 (2014)

Appl. Phys. Lett. 108, 202406 (2016)

- The SOT polarity is a function of heavy metal thickness.
- Thick regime: spin Hall dominant
- > Thin regime: interfacial spin-orbit with opposite sign to spin Hall

Is the sign of θ_{SH} fixed for a given material?

Reverse switching polarity by oxygen engineering

-Sign of spin Hall angle changes across a transition thickness of $SiO_2(t = 1.5 \text{ nm})$ -Cannot be understood by spin Hall physics \rightarrow suggest the role of interface

Nat. Nanotech. 10, 333 (2015)

Electric-field control of effective spin Hall sign

- $\theta_{SH} > 0$ 2 Initial state 0 -2 -4 6 After $\theta_{SH} < 0$ $V_{a} = -4 \text{ V}$ 2 0 0000 $R_{\rm H}$ (Ω) -2 6 $\theta_{SH} > 0$ After $V_{a} = 4 \text{ V}$ 2 0 -2 6 $\theta_{SH} < 0$ After 2 $V_{\alpha} = -4 \text{ V}$ 0 -2 -15 -10 10 15 I_{pulse} (mA)
- Competition b/w bulk spin Hall vs. interfacial SOC with opposite sign
- ➢ Device can switch to either up or down depending on its programmed SOT state → reconfigurable spin logic

Nat. Commun. 10, 248 (2019)

First principle calculations

First principle calculations performed in Prof. Nicholas Kioussis's group, California State University.

> The effective Rashba parameter ($P\alpha_R$) changes sign as oxygen is filled at the Pt/Co interface.

The spin accumulation direction changes sign when the negative effective Rashba torque exceeds the spin Hall torque.

Gradual modulation of SOTs

- > Application of V_{q} pulses on a Pt (1.5 nm)/Co (0.8 nm) device.
- \succ Thin gate oxide results in modulation at room temperature.
- The sign of effective spin Hall angle of the material can be changed using electricfield.
- Gradual modulation of SOTs can be applied to neuromorphic devices.
Illustration of Ru capping effect

With a strong spin relaxation near the FM/Ru interface, the absorption of spin current from the Pt layer into FM is greatly enhanced. The white arrows denote the spin currents.

PRL 117, 217206 (2016)

Ru capping effect in SOT

1/t_{FM} dependence of spin torque (surface torque)
 → Limitation on FM thickness
 → Thermal stability issue

Science 351, 587 (2016)

90 degree rotation Small MR Not compatible with MTJs

How about a **multilayer** or **ferrimagnet (FIM)**?

-Easy perpendicular anisotropy, enough magnetic volume

Multilayer: structural asymmetry can be added up

Maesaka, IEEE Trans. Magn. 38, 2676 (2002) Kim, PRB 53, 11114 (1996)

- -Two successive Co/Pd and Pd/Co interfaces are structurally dissimilar.
- -Lattice mismatch (9%) between Pd and Co \rightarrow Strain engineering
- -This distortion is 30% stronger for Co/Pd than for Pd/Co interfaces

Phys. Rev. Lett. 111, 246602 (2013)

SOT in ferrimagnet : CoGd

- Films deposited with varying Co and Gd compositions.
- CoGd has bulk PMA.
- Thermally stable thick magnetic layer is grown.

Phys. Rev. Lett. 118, 167201 (2017)

Anomalous scaling of SOT in ferrimagnets

- Switching efficiency ($\chi = H_p / J_s$), H_L and 1/M_s are normalized with respect to their respective values for Co₈₀Gd₂₀.
- Exceptional and disproportionate (to 1/M_S) change of η and H_L cannot be explained by existing SOT understanding.
 - x10 times increase in θ_{SH} due to negative exchange coupling

Ferromagnet vs. ferrimagnet

Alternating exchange fields in ferrimagnet (FIM) on an atomic scale
→ much less spin dephasing → long spin coherence length
→ Bulk-like torque in FIM

SOT effective fields Ferrimagnet Ferromagnet [Tb(0.34)/Co(0.32)]_N/Pt(4 nm) Pt(4 nm)/[Co(0.3)/Ni(0.3)]_N H_{LT}/J_{HM} (10⁻⁸ Oe \cdot cm²/A) 5.0 \div 0.2 8.0 \div 0.0 \cdot cm²/A) AFM Co/Tb Co/Ni 10 H 5 0 3 8 10 2 2 6 14 4 t_{Co/Ni} (nm) t_{Co/Tb} (nm) poor compensation

• FM Co/Ni: $t_{Co/Ni} \uparrow \rightarrow SOT \downarrow$.

$$H_{L} = \frac{h}{2e} \frac{J_{HM}}{M_{S} t_{FM}} \theta_{HM} \left[1 - \operatorname{sech} \left(\frac{t_{HM}}{\lambda_{HM}} \right) \right]$$

- FIM Co/Tb: SOT diverges at compensation.
- SOT in FIM is ~20 times larger than that in FM.
- SOT in FIM shows bulk-like-torque characteristic.

SOT current induced switching efficiency

Most switching through DW nucleation and propagation SOT switching efficiency: $\eta = H_P/J_W$

- η is in line with that of SOT effective fields, decreasing for FM and diverging at compensation.
- In FIM system, η is ~20 times higher than FM system.

Nat. Mater. 18, 29 (2019)

 $M_{\rm S}$ & $t_{\rm FM/FIM}$ effect?

$$H_{L} = \frac{h}{2e} \frac{J_{HM}}{M_{S} t_{FM}} \theta_{HM} \left[1 - \operatorname{sech} \left(\frac{t_{HM}}{\lambda_{HM}} \right) \right] \qquad \eta, H_{L} \propto 1 / \left(M_{S} t \right)$$

Surprisingly in FIM, the scaling trend of η and H_L contradicts SOT governing equation.

Nat. Mater. 18, 29 (2019)

Spin pumping in a ferrimagnet

-If spin coherence length is long, a transverse spin current passes through the Co/Ni or Co/Tb layer. -V_{ISHE} is generated.

SOT dynamics with two torque terms

Landau-Lifschitz-Gilbert equation in macrospin approximation

* from -0.3 to 1.2 varying with thicknesses

Phys. Rev. Appl. **3**, 064012 (2015)

Complex spin-dynamics

Phys. Rev. Appl. **3**, 064012 (2015)

Time resolved SOT dynamics measurements

Ta (6 nm)/Co₄₀Fe₄₀B₂₀ (0.8 or 1 nm)/MgO (2 nm)/SiO₂ (3 nm)

Sci. Adv. **3**, e1603099 (2017)

Anomalous back-switching with longer pulses

Field-like torque induced switching back process

Sci. Adv. **3**, e1603099 (2017)

of Singapore

Oscillatory spin-orbit torque switching

-Unipolar switching of PMA CoFeB dot.

-Positive current pulses with alternating duration of 2.5 ns and 7.5 ns. -Driving transistors can be replaced by diodes \rightarrow smaller size

Communications Physics 1, 2 (2018)

of Singapore

3D topological insulators (TIs)

□Spin polarized surface currents □Spin-momentum locking → giant spin Hall angle?

Exotic spin Hall angles from topological insulators

Review: J. Phys. D: Appl. Phys. 51, 273002 (2018)

Thickness dependent spin torques in Bi₂Se₃/CoFeB

- Used spin torque ferromagnetic resonance (ST-FMR) measurements.
- Identify the optimum thickness range of Bi₂Se₃ to be 5–8 quintuple layers (QL) to maximize the spin torque effect.
- A giant SOT efficiency (θ_{TI}) of ~1–1.75 at room temperature.

Nat. Comm. 8, 1364 (2017)

- TI magnetization switching reported in a Cr doped TI at 1.9 K with an external magnetic field [Nat. Mater. 13, 699 (2014)].
- Demonstrated magnetization switching of Bi₂Se₃/NiFe at room temp with a low critical current density (J_C~6×10⁵ A/cm²) and without a magnetic field.
- A giant $\theta_{TI} = 1.75$.

LAO/STO – 2DEG formation

LaAlO₃ grown on TiO₂ terminated SrTiO₃ (100)

LAO (2 nm)

2 DEG

STO

2 DEG formed inside the STO side

Spin-orbit fields in LaAIO₃/SrTiO₃ heterostructures

Appl. Phys. Lett. 105, 162405 (2014)

Spin Hall magnetoresistance

PRL 110, 206601 (2013)

 \rightarrow SHE and ISHE

 \rightarrow Depends on spin mixing conductance

Rashba magnetoresistance in LAO/STO

Interfacial nature of STO/LAO \rightarrow Rashba MR Spin Hall MR from FM/heavy metal is 0.01-1% Rashba MR is 1-2 order magnitude larger than spin Hall MR

PRB 96, 064401 (2017)

Giant charge-to-spin conversion at STO/LAO interface

- Possible inelastic tunneling via localized states for spin transmission

- $\theta_{\rm SH}$ = 6.3 (room temp)

Nano Lett. 17, 7659 (2017)

Observation of BMER in Bi₂Se₃

Bilinear magneto-electric resistance (BMER)

Strong crystal field effects induces out-of-plane spin texture Question the validity of single relaxation time approximation in STO(111) PRL 120, 266802 (2018)

Spin orbit torque efficiency vs. Power consumption

Review: J. Phys. D: Appl. Phys. 51, 273002 (2018)

Field-free SOT switching by symmetry breaking

Integration issue with MTJ Heat or repeated switching induced decrease of exchange bias Review: *Appl. Phys. Rev.* **5**, 031107 (2018)

101

One domain wall based field-less SOT switching

- Single domain wall (DW) can be pinned in anti-notch structure.
- DW stops at the neck part due to lower current density.
- DW surface energy: Phys. Rev. Applied 9, 024032 (2018)

Nano Lett. 18, 4669 (2018)

Field-free SOT from geometrical domain wall pinning

- No additional energy to nucleate DW.
- 2-3x reduction in switching current.
- Easy integration with MTJs.

Nano Lett. 18, 4669 (2018)
Dzyaloshinskii-Moriya interaction

Heisenberg exchange

$$E_{\rm H} = -\sum_{i,j} J_{ij} S_i \cdot S_j$$

Preference of spin alignment \rightarrow

Minimize the system energy

spin spiral with unique rotational sense

Dzyaloshinskii-Moriya interaction due to spin-orbit coupling

$$E_{\rm DM} = -\sum_{i,j} D_{ij} \cdot \left(S_i \times S_j \right)$$

Nat. Nanotechnol . 8, 152 (2013)

http://www.nanoscience.de/nanojoom/index.php/en/research/cu rrent-topics/noncollinear-spins/94-noncollinear-spins.html

Measurement methods of DMI

Current induced DW motion

Ryu, K.-S., *et al. Nat. Nanotechnol.* **8**, 527 (2013).

Asymmetric DW creep

S-G. Je, *et al. Phys. Rev. B* **88**, 214401 (2013)

4, 5248 (2014)

DMI induced frequency shift in spin waves

Pt (4 nm)/Co (1.6)/Ni (1.6)/MgO (2)/SiO₂ (3) \rightarrow D=0.44 mJ/m² Pt (2 nm)/CoFeB (0.8)/MgO (2)/SiO₂ (3) \rightarrow D=1.0 mJ/m²

Also see Cho et al., Nat. Commun. 6, 7635 (2015)

PRL 114, 047201 (2015)

Chiral magnet & magnetic skyrmion

What will happen if DMI is large in ferromagnetic materials?

Chirality or handness

Skyrmion

j>0

Ryu K-S. *et al. Appl. Phys. Express* **5** 093006 (2012); Fert, A. *et. al. Nat. Nanotechnol* . **8**, 152 (2013); Woo S. *et al. arXiv:1502.07376.*

90 nn

Co/Pd for Dzyaloshinskii-Moriya interaction (DMI) engineering

N=3

Co/Pd exhibits large DMI despite identical materials at top and bottom interface, a result of the large lattice mismatch. Enforces a single chirality of domain wall.

Nat. Commun. 8, 14761 (2017)

Simulated and experimental skyrmion images

Simulated skyrmion contrast

-Only visible when sample is tilted away from normal. -90 nm Skyrmions are stable at room temperature and no external field

Nat. Commun. 8, 14761 (2017)

Terahertz waves

Frequency (Hz)

Nature Mater. 1, 26 (2002)

Frequency 0.1 - 10 THz

Wavelength 0.03 - 3 mm

Photon energy 0.4 - 40 meV

Safety surveillance

IC chip quality control Opt. Express 13, 115-120 (2005)

Disease diagnosis Phys. Med. Biol. 55, 4615 (2010)

THz generation from magnetic multilayers

THz signal probes inverse spin Hall effect

116

THz emitter optimization

THz signal is optimized by choosing:

- NM material with large spin Hall angle
- Suitable FM & NM film thickness
- Proper substrates

Emitted THz wave:

- High signal to noise ratio (comparable with 500 μm ZnTe crystal)
- Broadband

Flexible THz emitters

Samples (on PET) are curved \rightarrow no clear degradation of the THz emission efficiency

 \rightarrow great flexibility of the new emitters.

Adv. Mat 29, 1603031 (2017)

Summary

- Spin orbit technologies
 - Spin wave based devices
 - Oxygen engineering in FM layer, resistivity of HM and FM
 - Structural asymmetry (lattice mismatch, etc.) multilayers (skyrmions)
 - Strain engineering, spin relaxation at the capping layer
 - Ferrimagnetic spintronics
 - 2DEG (LAO/STO), topological insulators, Weyl semimetals
 - Magnetic heterostructures \rightarrow THz emitter

