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Outline (Part 1)

1. Why simulation and theory?

2. Mean-field theory

3. Monte Carlo simulation

4. Micromagnetics

5. Spin drift-diffusion model (spin-transfer torque)

6. Ab initio + linear response (very brief)



Why simulation and theory?

Experiment: many unknowns & do not 

know what is inside exactly, but always true 

Theory 1: Elephant Theory 3: Polar bear

Theory 2: Camel

Model: Connecting experiment with 

theory; Less (more) “black box” than 

experiment (theory)

Theory: simple & powerful, but its applicability to a specific experiment 

depend on assumptions



Mean field theory

• Magnetization M versus temperature T

• In the classical viewpoint, M fluctuates around a preferred direction e 

The higher T, the more fluctuations  Average <M> along e decreases 

with T

• In the quantum mechanical viewpoint, the angular momentum state is 

quantized (J = 1/2, 3/2, 5/2, …)  Occupation probability of each state 

varies with T  Average <J> along e decreases with T

• Mean field approximation: an effective magnetic field acting on a spin Si

= thermal average <S> of neighboring spins



Mean field theory

• Heisenberg exchange Hamiltonian

• With thermal averaged spin      , fluctuations: 



• Neglecting the first term (fluctuations) and differentiating other terms 

with     give the mean exchange field
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Mean field theory

• Average of angular momentum states gives

• B also contains <S> so that the above equation is solvable iteratively.
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Mean field theory: Example

• Rare earth (RE) – transition metal (TM) ferrimagnet (e.g. GdCo)

• Parameters

– Exchange (T2/meV): TM-TM = 1200, RE-RE = 30, TM-RE = -120 (antiferro-

coupling)

– Angular momentum: TM = 3/2, RE = 7/2

– Landé g factor: TM = 2.2, RE = 2.0
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TM = magnetic moment compensation 

point due to

• Antiferromagnetic coupling

• Different T-dependence (different 

exchange)



Monte Carlo method

• Flip a spin depending on a probability

• The Metropolis algorithm

1. From a state (spin configuration) x0, the next state x1 is generated with a 

single spin flip

2. Calculate ∆E = E(x0) – E(x1) and P = exp(-∆E/kBT)

3. Generate a random number r within [0, 1]

4. If r ≤ P, accept x1

5. If r > P, reject x1 and instead stay at x0

6. Repeat steps 1~5 until a criterion is satisfied



Monte Carlo method: Example

R = (# of FM spins/# of total spins) at 

the interface layer

R = 0 or 1  perfect AFM or FM

R = 0.5  maximally imperfect interface

No exchange bias at R = 1 due to 

domain wall formation in AFM layers

Li, Moon, KJL, J. Magn. 16, 323 (2011) R = 0.6                 R = 1.0

FM 3rd FM 4th

AFM 5th AFM 6th



Micromagnetics

• A standard tool to study magnetization dynamics

• Numerically solve the Landau-Lifshitz-Gilbert (LLG) equation for many 

interacting magnetic moments

– γ = gyromagnetic ratio

– m = unit vector along the magnetization

– Beff = effective magnetic field

– α = damping constant

– τ = torque other than precession (the first term) and damping (the second term) 

torques (e.g., spin-transfer torque)
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Precession torque

• The precession torque originates from Zeeman-like coupling 

between spin and effective magnetic fields
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Damping torque

• Let us take a phenomenological description of damping torque

• What is the direction (or vector form) of the damping torque?

• Damping effect describes energy dissipation
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Too complicated to exactly calculate
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Effective field Beff
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Spin-Orbital Coupling & Quenching

Coupling among Magnetic Dipoles

Coupling External Field with Spin

• A = exchange stiffness, K = Magnetic anisotropy constant, k = unit vector 

along the uniaxial anisotropy, Bd = dipolar field, Bext = external field



Effective field Beff
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Exchange              Uniaxial anisotropy

Dipole: volume charge              surface charge         external

• Exchange: nearest neighbor & prefers uniform M

• Anisotropy: local & prefers M // k

• External: usually uniform & prefers M // Bext

• Dipole: nonlocal & prefers zero volume and surface charges



Demagnetization effect due to dipolar field
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Dipole: volume charge              surface charge         

• Bd of (B) >> Bd of (A)

• For thin film, Bd of (A) ~ 0 & Bd of (B) ~ -4πMS (in cgs)

 demag energy = -1/2(M.Bd) = 2πMS
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Thermal fluctuation
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• Effect of temperature  thermal fluctuations of M

• Add a thermal fluctuation field Bth to Beff

• From the Fluctuation-Dissipation theorem, Bth (= h) must have the 

following statistical properties

Beff

M

T = 0 K
Beff

M

T = 300 K



How to numerically solve?

• The system is discretized by uniform cells (finite difference method)

• |Mi| = MS and is uniform within a cell:

• For each     , the LLG equation is numerically solved using the 

continuum approximation (d = unit cell size); 

Mi
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Two main assumptions

(1) Mi is uniform within a cell:

(2) Continuum approximation (         is a small parameter)

• Assumption (1)  micromagnetic simulation is invalid near TC (Curie 

Temperature) because it ignores short wavelength magnons (λ < d)

iSi M mM ˆ=

id m̂∇

• Grinstein and Koch, PRL 90, 

207201 (2003) [right figure]

• Conventional micromagnetics

overestimates TC substantially

• Proper T-dependent 

renormalization is required



Two main assumptions

(1) Mi is uniform within a cell:

(2) Continuum approximation (         is a small parameter)

• Assumption (2)  micromagnetic simulation is invalid for 

• For ferromagnets: Criterion of “d”

a few nm

• Antiferromagnets or antiferromagnetically coupled ferrimagnets: 

continuum approximation does not work  Atomistic LLG
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What to do with micromagnetics

• When two assumptions are fine, micromagnetic simulation has been 

successful to describe various types of magnetization dynamics

• Several examples

(1) Current-induced magnetization precession in spin valve structures

(2) Current-controlled spin-wave attenuation

(3) Spin-wave propagation in the presence of Dzyaloshinskii-Moriya 

interaction (DMI)

(4) Magnetic droplet nucleation in the presence of DMI



Current-induced magnetization precession

• Current injection into a spin valve FM1/NM/FM2 generates a spin-

transfer torque (STT), resulting in magnetization dynamics

• Experiment: Kiselev et al. Nature 425, 381 (2003)
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Current-induced magnetization precession

• Micromagnetic simulation: KJL et al. Nat. Mater. 3, 877 (2004)

Experiment Micromagnetics

“W” region
Highly nonlinear magnetization dynamics 

induced by STT



Current-controlled spin-wave attenuation

• STT acting on continuously varying magnetizations

• Adiabatic STT = spin-current flow

• Spin waves on spin-current flow = A walking person on moving walk
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Adiabatic STT Non-adiabatic STT

Spin wave Doppler shift

• Prediction: Lederer & Mills, Phys. 

Rev. 148, 542 (1966)

• Experiment; Vlaminck & Bailleul, 

Science 322, 410 (2008)



Current-controlled spin-wave attenuation

• What is the role of non-adiabatic 

STT in spin-wave propagation?

• Seo, KJL, et al., PRL 102, 147202 

(2009): Non-adiabatic STT competes 

with damping torque and thus 

controls spin-wave attenuation

• Spin-wave attenuation length 



Spin-wave propagation in the presence of DMI

• DMI is the antisymmetric exchange interaction between neighboring 

spins

• DMI prefers a chiral spin textures (rotating around the DMI vector D)

• Spin-wave dispersion [Moon, KJL, et al., PRB 88, 184404 (2013)]

• By measuring spin-wave dispersion, one can determine the DMI 

strength “D”

DMI contribution



• Moon, KJL, et al., PRB 88, 184404 (2013)

• Micromagnetic simulation confirms the validity of spin-wave dispersion

• Widely used to measure DMI [Nembach et al. Nat. Phys. 11, 825 (2015); 

Cho et al, Nat. Commun. 6, 7635 (2015); Lee, KJL, et al., Nano Lett. 16, 

62 (2016)]

Spin-wave propagation in the presence of DMI

DMI contribution



Magnetic droplet nucleation in presence of DMI

• Kim, KJL, et al., PRB 95, 220402 (R) (2017)

• Another way to determine the DMI  Droplet nucleation field depends 

on the DMI



Atomistic LLG

• An example: Antiferromagnetic domain wall motion driven by spin-

orbit torque [Shiino, KJL, et al., PRL 117, 087203 (2016)]

• Atomistic model 

• All quantities are defined at discrete atomic lattices (no continuum 

approximation)



Antiferromagnetic domain wall motion

• Eq. (6): Non-relativistic

• Eq. (12): Relativistic

• Eq. (8): Lorentz contraction of DW width



Rare-earth (RE)–transition metal (TM) Ferrimagnet

• Lande-g factor g𝐿𝐿
 2.2 for Co, 2.0 for Gd

For RE-TM ferrimagnets, TM (Mtot = 0 but Stot ≠ 0) is different from TA (Stot

= 0 but Mtot ≠ 0 )

TM: Magnetic moment compensation point

TA: Angular moment compensation point  Magnetization dynamics is 

antiferromagnetic at TA + finite Zeeman coupling

TA

𝑺𝑺 = −
𝑴𝑴
𝛾𝛾

= −
ℏ

𝑔𝑔𝐿𝐿𝜇𝜇𝐵𝐵
𝑴𝑴

S = Angular momentum

M = Magnetic moment

γ= Gyromagnetic ratio



𝑀𝑀�̈�𝑋 + 𝐺𝐺�̇�𝜙 +
𝑀𝑀
𝜏𝜏
𝑋𝑋 = 𝐹𝐹

𝐼𝐼�̈�𝜙 − 𝐺𝐺�̇�𝑋 +
𝐼𝐼
𝜏𝜏
𝜙𝜙 = −𝜅𝜅 sin𝜙𝜙 cos𝜙𝜙

Field-driven ferrimagnetic DW motion: Theory

Equations of Motion with two collective coordinates:

DW position X and DW angle φ

M : Mass

I : the moment of inertia

G : Gyrotropic coeff

τ : relaxation time

F : Force (external field)

κ : DW hard-axis anisotropy

• G = 2(S1-S2) x Area 

• At T = TA  S1-S2 = δs = 0  G = 0

 X and φ are decoupled



Field-driven ferrimagnetic DW motion: Theory (2)

In the precessional regime

DW speed

Walker breakdown field

α : damping constant

λ : DW width

H : external field

Kd : DW hard-axis anisotropy

2211 SSS ααα +=• At T = TM  M1-M2 = 0

 vDW1 = vDW2 = 0

& DW motion changes its direction at TM

• At T = TA  δs = 0 & M1-M2 ≠ 0

 vDW = maximum & HWB → ∞

𝑣𝑣𝐷𝐷𝐷𝐷 =
𝛼𝛼𝑠𝑠

𝛼𝛼𝑠𝑠 2 + 𝛿𝛿𝑠𝑠
2 𝑀𝑀1 −𝑀𝑀2 𝜆𝜆𝐻𝐻

𝐻𝐻𝐷𝐷𝐵𝐵 =
𝐾𝐾𝑑𝑑𝛼𝛼𝑠𝑠

2𝛿𝛿𝑠𝑠(𝑀𝑀1 −𝑀𝑀2)𝜆𝜆



Field-driven DW Experiment: FeCoGd
Kim et al., Nat. Mater. 16, 1187 (2017)

Done by T. Ono’s group



Determination of TM
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DW velocity: Experiment
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DW velocity: Modeling

• Solid lines :

• Simulation index 5 = TA (𝛿𝛿𝑠𝑠 = 0)

𝑣𝑣𝐷𝐷𝐷𝐷 =
𝛼𝛼𝑠𝑠

𝛼𝛼𝑠𝑠 2 + 𝛿𝛿𝑠𝑠
2 𝑀𝑀1 −𝑀𝑀2 𝜆𝜆𝐻𝐻



Magnetic Skyrmions

• Skyrmions: small (~ 10 nm), fast, move at low current, defect-insensitive

A. Fert et al., “Skyrmions on the track”, Nat. Nano. (2013)



Skyrmion Hall effect

• Transverse deflection of skyrmion ~ the Hall effect

W. Jiang et al., Nat. Phys. (2017); K. Litzius et al., Nat. Phys. (2017)



Charge Hall effect vs Skyrmion Hall effect

𝑄𝑄�̇�𝑹 × 𝑩𝑩Lorentz force:

Charge Hall effect

Elementary charge External magnetic field

Skyrmion Hall effect

Topological charge Fictitious magnetic field

𝑄𝑄 ≡ �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒏𝒏 � ⁄𝜕𝜕𝑥𝑥𝒏𝒏 × 𝜕𝜕𝑦𝑦𝒏𝒏 4𝜋𝜋 𝑩𝑩 = −4π𝑠𝑠net�𝒛𝒛

Net spin density

Vanishing skyrmion Hall effect for antiferromagnet (snet = δs= 0)

Barker & Tretiakov, PRL 116, 147203; Zhang, Zhou, & Ezawa, NCOMM 7, 10293 (16)



Current-driven bubble elongation in GdFeCo/Pt
Hirata et al., Nat. Nanotechnol. 14, 232 (2019)

Bubble elongation ~ half skyrmion motion

TA ≈ 280 KDMI field = 63 mT >> DW hard-

axis anisotropy field = 0.9 mT

 Well-defined topological 

charge Q



Elongation angle vs temperature (Experiment)

Elongation angle ≈ 0 at TA  Vanishing skyrmion Hall effect for snet = 0

𝜃𝜃SkH ≈ tan−1
2𝑠𝑠net𝑄𝑄𝜆𝜆
𝛼𝛼𝑠𝑠total𝑟𝑟

,



Elongation angle vs temperature (Modeling)

Elongation angle ≈ 0 at TA  Consistent with experiment & theory



Spin drift-diffusion model

• Spin transport is an important branch of spintronics

• Giant magnetoresistance (GMR: A. Fert and P. Grünberg, Nobel prize in 

physics, 2007)

• How to understand GMR?

• Two-current model

• Spin-flip scattering is 

ignored



Valet-Fert theory [PRB 48, 7099 (1993)]

• Spin-flip scattering is included for longitudinal (s || m) spin current

• Spin drift:

• Spin diffusion

• s = ↑ or ↓

• Js = spin current & µs = spin chemical potential ~ spin accumulation

• σs = spin-dependent conductivity

• ls = spin-diffusion length



Spin drift-diffusion model

Single FM Spin valve



What about transverse spin current? STT

 Angular momentum conservation

 Spin angular momentum (incoming 

s-el’) + local magnetic momentum 

(localized d-el’) = CONSTANT

 STT ∝ (Details of scattering matrix at 

interface) x (Transverse spin 

accumulation)

 Bi-stable switching (P or AP) 

depending on the current sign.

[1] J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

[2] L. Berger, Phys. Rev. B 54, 9353 (1996)

Thicker
Polarizer

Thinner
Free layer

STT

STT

Free M aligns P to Polarizer M

Free M aligns AP to Polarizer M



Spin precession due to s-d exchange

• The s-electron spin precesses around the M (d-electron) 
of FM2 when M’s of FM1 and FM2 are not collinear.

FM1 FM2

Cu or MgO NMNM



For all current-carrying electrons

kx

ky

E-field

Cu

Transverse components = out-of-phase quickly 

• Spin-transfer torque = Surface torque in fully metallic SV
Ferromagnetic (or spin) decoherence length



Boundary condition for transverse spin current

• Neglecting spin-orbit coupling effect, the spin coherence length of 

transverse spin current in FM is extremely short  Quantum BC at 

NM/FM interface assuming no transverse spin current in FM [Brataas et 

al., Eur. Phys. J. B 22, 99 (2001)]

• Charge current Je: 

• Spin current Js (1st line: longitudinal, 2nd line: transverse):

• Gs = spin-dependent interface conductance

• ∆µ = pontential drop over the interface

• G↑↓= spin-mixing conductance [Im(G ↑↓) is ignored]



Angular dependence of STT

• KJL et al., Phys. Rep. 531, 89 (2013)

• STT in NM | FM1 | NM | FM2 | NM | FM3 multilayer

• θ1 and θ2 are the magnetization angles of FM2 and FM3 with respect 

to the magnetization angle of FM1, respectively.



Band structure calculation

• First-principles: electronic structure at equilibrium based on the Density 

Functional Theory (DFT)

• In magnetism: Spin moment, Orbital moment, Magnetic Anisotropy, 

Exchange, DMI, …

• Various codes depending on the type of basis function, the way to 

describe the exchange-correlation, etc

• An example: OpenMX http://www.openmx-square.org/

• DFT + norm-conserving pseudopotentials + pseudo-atomic localized 

basis functions

http://www.openmx-square.org/


Band structures of 3d FMs

s-p band

d bands



Transport calculation

• Calculate non-equilibrium quantities such as spin current and spin 

density based on a model Hamiltonian or ab initio band

• An example: Kubo formula: spin Hall conductivity

• = Fermi-Dirac distribution function

• = a periodic part of the Bloch state (eigenvalue =      )

• = x component of the velocity operator

• = y component of the spin current operator
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Anomalous & Planar Hall currents in FMs

• Calculate spin current with spin polarization along m of FMs

• Two effects can be identified (we consider spin flow in z-direction & E

in x-direction)

• Anomalous Hall effect: 

• Planar Hall effect: 
yzz

m−=×=×∝ xmEm
( ) ( ) zxzz

mm=⋅=⋅∝ mxmmEm
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