

Magnetocaloric Effect: From Energy Efficient Refrigeration to Fundamental Studies of Phase Transitions

Victorino Franco

Universidad de Sevilla 2019 IEEE Magnetics Society Distinguished Lecture

vfranco@us.es

- IEEE
 - The world's largest technical professional organization dedicated to advancing technology for the benefit of humanity
 - Sections at different regions worldwide
 - Societies and Technical Councils
 - Student branches
 - Mentoring program
 - IEEE Collabratec
- IEEE Magnetics Society
 - Publishes IEEE Transactions on Magnetics & IEEE Magnetics Letters
 - Organizes MMM and Intermag Conferences + ...
 - Summer School for graduate students
 - Chapter activities
 - Distinguished Lecturer program

Rio All Suites Hotel and Casino • November 4-8, 2019 • Las Vegas, Nevada

www.magnetism.org

Cathedral and Giralda

World records Largest Gothic Cathedral 3rd largest church

UNESCO World Heritage

Plaza de España Tourists from all over the World...

and beyond

Royal Tobacco Factory

Stone-built in the XVIII century First tobacco factory stablished in Europe The most important one (produced 75% of the cigarettes consumed in Europe)

Bizet's opera Carmen was set here

Universidad de Sevilla

Founded in 1505 ~ 74,000 students; 4,500 academic staff 2nd largest in Spain in number of students 8th in Spain in scientific production 1st in Spain in international patents

MCE: Materials research & phase transitions

Magnetic materials for energy applications

- Using non-renewable energy sources is a problem
- Non-efficient conversion is even worse

Influence on Earth? 1884-2018

Temperature Difference (Fahrenheit)

MAGNETIC REFRIGERATION:

towards an increased energy efficiency

Room temperature magnetic refrigeration \rightarrow phase transitions

V.Franco, J.S.Blázquez, J.J.Ipus, J.Y.Law, L.M.Moreno-Ramírez, A.Conde, Progress in Materials Science, 93 (2018) 112

What is magnetocaloric effect?

• Link to offline video

Real experiment

Real life applications

GE prototype 2014

Real life applications

Haier + Astronautics Corporation of America + BASF @ CES Las Vegas 2015

Not only fridges

Characteristic parameters

Magnetic entropy change

$$\Delta S_M = \mu_0 \int_0^{H_{\text{max}}} \left(\frac{\partial M}{\partial T}\right)_H dH$$

Adiabatic temperature change $\Delta T_{ad} = -\mu_0 \int_0^{H_{\text{max}}} \frac{T}{C_{p,H}} \left(\frac{\partial M}{\partial T}\right)_{n,H} dH$

Characteristic parameters

Magnetic entropy change

$$\Delta S_M = \mu_0 \int_0^{H_{\text{max}}} \left(\frac{\partial M}{\partial T}\right)_H dH$$

Refrigerant capacity

$$RC(\Delta H) = \int_{T_{cold}}^{T_{hot}} \Delta S_M(T, \Delta H) \ dT$$

Amount of heat that can be transferred between reservoirs Dangerous to use for shallow peaks

Adiabatic temperature change

$$\Delta T_{ad} \approx -\frac{T\Delta S_M}{C_{p,H}}$$

Coef. of Refrigerant Performance

$$CRP(H_{\text{max}}) = \frac{\Delta S_M \Delta T_{rev}}{\mu_0 \int_0^{H_{\text{max}}} M dH}$$

E. Bruck et al. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 374 (2016) 20150303

Temperature averaged Entropy Change

$$TEC(\Delta T_{lift}) = \frac{1}{\Delta T_{lift}} \max_{T_{mid}} \left\{ \int_{T_{mid}}^{T_{mid} + \frac{\Delta T_{lift}}{2}} \Delta S_M(T) \ dT \right\}$$

L.D. Griffith et al. J. Appl. Phys. 123 (2018) 034902

TYPES OF MCE MATERIALS

R Franco V, et al. 2012. Annu. Rev. Mater. Res. 42:305–42

TYPES OF MCE

SOPT

- Moderate MCE peak
- Broad temperature span
- No hysteresis
 - Examples: Gd, amorphous alloys...

magnetic refrigeration and CP1 for between Fi deal MCE material

MATERIALS

FOPT

Large MCE peak

- Reduced temperature span
- Hysteresis
- Magnetostructural transitions require large field
- Examples: Gd₅Si₂Ge₂, La(FeSi)₁₃, MnFePAs, Heusler alloys

/ Direct

- Temperature sensor in contact with the sample
 - Thermal mass of the sensor has to be much lower than that of the sample
 - Not broadly available as commercial systems
 - Low signal for low field
- Possible options
 - AC techniques
 - Mirage effect
 - Pulsed fields
 - Recalibration of sensor measurements

Direct

Magnetic Indirect

• Magnetometer with variable temperature option

$$\Delta S_M = \mu_0 \int_0^{H_{\text{max}}} \left(\frac{\partial M}{\partial T}\right)_H dH$$

Direct

Indirect Calorimetric

Magnetic

Calorimeter with applied magnetic field

There is an optimal value for which we do not have to reach 0 K and prevents errors

J. Phys., D, Appl. Phys 49 (2016) 495001

Beware of the measurement protocol!!!

The history of the sample (T & H) is rélevant Measurement For FOPT materials, saturate the transition in between measurements

More info about protocol at:

-B. Kaeswurm, V. Franco, K. P. Skokov, and O. Gutfleisch, J. Magn. Magn. Mater. 406(2016) 259 -Lake Shore application note

Field dependence of $\Delta S_M(H)$ (AKA: how to compare with data from the literature)

- Data evolve differently with field for different T
- Usual assumption: linear behavior

Description of $\Delta S_M(H)$

Why not using a linear approach for the value of the peak?

Description of $\Delta S_M(H)$

Why not using a linear extrapolation?

Description of $\Delta S_M(H)$

A power law represents properly the data

TYPES OF MCE SOPT

• Universal scaling

• Critical exponents

MATERIALS

• How to know if it is FOPT?

FOPT

• Critical point of the SOPT

Data reduction

Field dependence of $\Delta S_M(H)$

V. Franco, J.S. Blázquez, and A. Conde, J. Appl. Phys. 100 (2006) 064307

Universal curve for the field dependence?

- Different characteristic regions of *n*
- The temperature dependence of ΔS_M also changes above and below T_C
- Phenomenological universal curve:
 - Normalization of ΔS_M
 - Rescaled temperature using 2 reference points

$$\theta = \begin{cases} -(T - T_C) / (T_{r1} - T_C); & T \le T_C \\ (T - T_C) / (T_{r2} - T_C); & T > T_C \end{cases}$$
"Measurements" for different applied fields

Selection of equivalent points (with respect to the peak)

Rescale (normalize) the vertical axis

Rescale the temperature axis

Experimental results

V. Franco, J.S. Blázquez, and A. Conde, Appl. Phys. Lett. 89 (2006) 222512

Spin freezing transition in core-shell nanoparticles: field dependence

V. Franco, A. Conde, D. Sidhaye, B.L.V. Prasad, P. Poddar, S. Srinath, M.H. Phan, H. Srikanth, J. Appl. Phys. 107 (2010) 09A902

MCE of different alloy series

Field dependence is eliminated

Temperature dependence is related to the critical exponents

Similar values of the critical exponents

V. Franco, J.S. Blázquez, M. Millán, J.M. Borrego, C.F. Conde, A. Conde, J. Appl. Phys. 101 (2007) 9C503

Universal curve for ΔS_M

Extrapolation using the universal curve

 $Fe_{91-x}Mo_8Cu_1B_x$ (x=15, 17, 20)

1.0 0.8 0.6 $\Delta S_{M}(J \text{ kg}^{-1} \text{ K}^{-1})$ 0.4 at. % B 0.2 15 (extrapolation) 15 - 17 - 20 0.0 250 300 350 400 450 500 550 600 T (K)

V. Franco, C.F. Conde, J.S. Blázquez, A. Conde, P. Švec, D. Janičkovič, L.F. Kiss, J. Appl. Phys. 101 (2007) 093903

Overlapping magnetic phenomena: the use of n

 $Er_{0.15}Dy_{0.85}Al_2$

V. Franco, A. Conde, V.K. Pecharsky, K.A. Gschneidner, Jr., Europhys. Lett. 79 (2007) 47009

Overlapping magnetic phenomena: universal curve

 $Er_{0.15}Dy_{0.85}Al_2$

V. Franco, A. Conde, V.K. Pecharsky, K.A. Gschneidner, Jr., Europhys. Lett. 79 (2007) 47009

Problem:

- Experimental data might be noisy
 - Derivatives
- Smoothing would alter the shape of the peak

Solution:

Problem:

- Experimental data might be noisy
 - Derivatives
- Smoothing would alter the shape of the peak

Solution:

Problem:

- Experimental data might be noisy
 - Derivatives
- Smoothing would alter the shape of the peak

Solution:

Problem:

- Experimental data might be noisy
 - Derivatives
- Smoothing would alter the shape of the peak

Solution:

Problem:

- Experimental data might be noisy
 - Derivatives
- Smoothing would alter the shape of the peak

Solution:

The physics behind the universal curve: Scaling

- 2nd order phase transitions scale:
 - For a given universality class, all magnetization curves collapse
 - MCE should collapse
- Theoretician's point of view: if EOS and critical exponents are known, the universal curve can be calculated
- Our point of view: the universal curve can be found without knowing <u>neither EOS</u>, <u>nor</u> <u>the critical exponents</u>

Features which are EOS-independent

• Scaling EOS

$$\frac{M}{\left|t\right|^{\beta}} = m_{\pm} \left(\frac{H}{\left|t\right|^{\Delta}}\right)$$

Magnetic entropy change and temperature axis scale with field

$$\Delta S_M / a_M = H^{\frac{1-\alpha}{\Delta}} s(t / H^{1/\Delta})$$

 By using the reference temperatures there is no need to know the critical exponents or the EOS to use this scaling

V. Franco, A. Conde, J.M. Romero-Enrique, J. S. Blázquez, J. Phys. Condens. Matter 20 (2008) 285207

Critical Exponents

- Describe the behavior of physical quantities **near** continuous phase transitions.
- They are universal
 - do not depend on the details of the physical system,
 - depend only on some of its general features, e.g.
 - dimensionality of the system
 - range of the interactions
- Kenneth G. Wilson, Nobel Prize in Physics 1982 "for his theory for critical phenomena in connection with phase transitions"

Magnitude	Exponent
$\Delta T_{ad}^{\ pk}$	$1/\Delta$
T_r	$1/\Delta$
$T_{pk} - T_C$ (not mean field)	$1/\Delta$
$T_{pk} - T_C$ (mean field)	0
$\Delta S_{M} \left(T = T_{c} \right)$	$1+1/\delta(1-1/\beta) = (1-\alpha)/\Delta$
$\Delta S_{M}^{\ pk}$	$1+1/\delta(1-1/\beta) = (1-\alpha)/\Delta$
RCArea or RCFWHM	$1+1/\delta$

In the mean field case, $\alpha=0 \rightarrow \Delta T_{ad}$ and ΔS_M would have the same field dependence

V. Franco, A. Conde, Int. J. Refrig. 33 (2010) 465

Field dependence of the reference temperature

 $Fe_{78}Co_5Zr_6B_5Ge_5Cu_1$

Field dependence of the peak entropy change

Field dependence of the refrigerant capacity

V. Franco, J. S. Blázquez, and A. Conde, J. Appl. Phys. 103, 07B316 (2008)

The problem

- Gd₅Si₂Ge₂ has a structural phase transition:
 - The low temperature phase disappears before it reaches its Curie temperature.
- How to determine T_c ?

Solution?

- Use Arrott plot only on one side
- Extrapolate to higher temperatures
- Anomalous values of the critical exponents (β=2.2; γ=0.9)
- Reason: A-N plots are approximately linear, even for large variations of the critical exponents

R. L. Hadimani, Y. Melikhov, J. E. Snyder, and D. C. Jiles, J. Appl. Phys. 103, 033906 (2008)

Alternative solution

- Suppress the magneto-structural transition by proper doping, as was done for the case of the Gd₅Si₂Ge₂ compound
- In the undoped compound, the low temperature phase is orthorhombic and it transforms to a monoclinic phase at temperatures above 270 K.
- In the Gd₅Si₂Ge_{1.9}X_{0.1} doped alloy (with X= Al, Cu, Ga, Mn, Fe, Co) the monoclinic phase is entirely suppressed in the case of the first four of these metal additives, and is mostly suppressed in the cases of the latter two of these additives.

V. Franco, A. Conde, V. Provenzano, R.D. Shull, JMMM 322 (2010) 218

Universal curve

• Evidence of a second order phase transition

V. Franco, A. Conde, V. Provenzano, R.D. Shull, JMMM 322 (2010) 218

Kouvel-Fisher method

• Iterative process:

- Arrott-Noakes plot $(M^{1/\beta} vs (H/M)^{1/\gamma})$
- M_0 and χ_0 via extrapolation (intersection with axes)
- Define

$$X(T) = \chi_0^{-1} \left(d\chi_0^{-1} / dT \right)^{-1} = \left(T - T_C \right) / \gamma$$
$$Y(T) = M_0 \left(dM_0 / dT \right)^{-1} = \left(T - T_C \right) / \beta$$

- Extract exponents and T_c
- Iterate until convergence

A fully second order case

Arrott-Noakes plot for the Al doped Gd₅Ge₂Si₂ alloy using the exponents extracted from the Kouvel-Fisher analysis

Scaling of MCE using K-F exponents

Arrott plot using exponents obtained from MCE

Exponents were extracted from the scaling of the magnetic entropy change

No qualitative difference

 Differences between critical exponents obtained in both ways are within error margin

Fe doped Gd₅Ge₂Si₂

Scaling with a single reference temperature does not fully hold

Fe doped Gd₅Ge₂Si₂

Using two reference temperatures allows the collapse \rightarrow mostly second order transition

Arrott plot using exponents obtained from MCE

• K-F method could not be used due to the remaining structural transition
Reduced thermal hysteresis (mostly second order)

Doped GdSiGe: critical exponents determination

	T _c (K)	β	γ	δ
Pure Gd (literature)	293.3	0.381	From 1.196 to 1.24	Measured 3.615 Calculated* from 4.139 to 4.25
Cu-doping	295.5	0.38 [0.4]	1.15 [1.1*]	4.03* [3.5]
Mn-doping	295.6	0.41 [0.40]	1.05 [1.2*]	3.56* [4.1]
Ga-doping	289.5	0.34 [0.42]	1.17 [1.3*]	4.44* [4.1]
Al-doping	293.5	0.38 [0.39]	1.08 [1.1*]	3.84* [3.8]
Fe-doping	292	[0.3]	[0.9*]	[4]

[] MCE; others, Kouvel-Kisher

V. Franco, A. Conde, V. Provenzano, R.D. Shull, JMMM 322 (2010) 218

Hysteresis...

who cares?

Magnetic refrigeration

- Requires cyclic operation (T and H)
- Thermal hysteresis reduces the cyclic response
- Rate dependent phenomena limits the speed of operation

Thermomagnetic motor

- Cyclic operation
- Simulations indicate that performance is enhanced with hysteresis

Single shot operation

• Hysteresis might prevent undesirable triggers

B. Kaeswurm, V. Franco, K.P. Skokov, O. Gutfleisch, J. Magn. Magn. Mater. 406 (2016) 259

C. V. X. Bessa, L. D. R. Ferreira, O. Horikawa, J. C. B. Monteiro, F. G. Gandra, and S. Gama, J. Appl. Phys. 122 (2017) 244502

How to characterize hysteresis? FORC

- FORC = First Order Reversal Curves
- Initially proposed as a method to identify the Preisach model parameters
- Later extended as a model-independent technique to characterize the irreversibility in magnetic materials magnetization reversal.

Distribution of hysteresis operators

Spectral decomposition of the loop using hysterons

Characteristics of a hysteron

- Rectangular loops
- Coercivity H_c
- Interaction field H_u
- Reversing at -(H_c+H_u) and (H_c-H_u)

H vs T FORC

H FORC

H, H_r plane $\rho(H, H_r) = -\frac{1}{2} \frac{\partial^2 M(H, H_r)}{\partial H_r \partial H} \quad (H \ge H_r)$ H_c and H_u Field sweep

T FORC T, T_r plane $\rho(T, T_r) = -\frac{1}{2} \frac{\partial^2 M(H, H_r)}{\partial T_r \partial T} \quad (T \ge T_r)$ T, and T

T_h and T_u Temperature sweep

Time consuming

Heusler alloys

• Structural transition

Austenite (Fm3m) High temperature phase

Martensite (P4/mmm) Low temperature phase

- Our sample composition $Ni_{45.7}Mn_{36.6}In_{13.5}Co_{4.2}$
- Non-magnetic phase at low T \rightarrow ferromagnetic phase at high T

$Ni_{45.7}Mn_{36.6}In_{13.5}Co_{4.2}$

First measurement increasing field

The transition can be induced by field and temperature

V. Franco, T. Gottschall, K. Skokov, O. Gutfleisch, IEEE Magnetics Letters 7 (2016) 6602904

$Ni_{45.7}Mn_{36.6}In_{13.5}Co_{4.2}$

First measurement increasing field (precooling before each measurement) First measurement decreasing field (preheating before each measurement)

 \rightarrow USE THE APPROPRIATE MEASUREMENT PROTOCOL

Temperature FORC

The transition gets displaced for different fields FORC curves also do

FORC distribution

Obtaining the distribution requires smoothing

While there can be many T values, T_r is more limited

Different smoothing factor along the different axes

Procedure:

Modified Pike's algorithm: fitting to a polynomial surface

linear in T_r quadratic in Tusing a matrix of 3 data points along the T_r axis and 5 along the T axis.

FORC distribution

- Qualitatively similar behavior
- T_u axis is referred to the center of the loop
- Cooling or heating does not play a remarkable role (asymmetry of the transition)

Existing methods to determine the order of MCE phase transitions

Banerjee criterion

- Landau expansion of free energy leads to $H = aM + bM^3 = a'(T - T_C)M + bM^3$
- Second order phase transitions have a positive b
- At the Curie temperature a = 0
- The order of the phase transition can be determined from the slope of $\frac{H}{M}$ vs M^2

Application to RCo₂

• Banerjee criterion: DyCo₂?

• Calorimetric measurements indicate that DyCo₂ is first order

C.M. Bonilla, J. Herrero-Albillos, F. Bartolomé, L.M. García, M. Parra-Borderías, V. Franco, Phys. Rev. B 81 (2010) 224424

Universal scaling

C.M. Bonilla, J. Herrero-Albillos, F. Bartolomé, L.M. García, M. Parra-Borderías, V. Franco, Phys. Rev. B 81 (2010) 224424

Why does this work?

- Banerjee criterion was based on a particular equation of state (Landau expansion)
- Universal scaling does not impose any restriction to the formulation of the equation of state
 - We only asume that second order phase transitions scale
 - The universal curve is a more general approach to determine the order of the phase transition
 - Unfortunately, it relies on qualitative features \rightarrow subjective

New method for Fingerprinting

the order of the phase transition

Bean-Rodbell model $\Delta S_M \propto H^n$

J.Y. Law et al. Nature Communications 9, 2680 (2018)

A peculiar case

- GdBaCo₂O_{6-δ}
- perovskite cobaltite

- Low T: AFM-FM
- High *T*: FM-PM

J Alloys Compds. 777, 1080 (2019).

A peculiar case

- ・GdBa_{1-x}Sr_xCo₂O_{6-δ}
- Same crystal symmetry for x=0 & 1
- Unlike x=0, x=1 becomes SOPT

J Alloys Compds. 777, 1080 (2019).

Experimental

- LaFe_{13-x}Si_x samples prepared by suction casting
 Annealed at 1373 K for 12 h
- Microstructural characterization by XRD and SEM
- M(H,T) measured in a VSM using two different protocols:
 - Temperature sweeping at different fields
 - Discontinuous isothermal protocol:
 - Heat the sample in zero field above the transition
 - Cool down to measurement temperature in zero field
 - Measure increasing field (also decreasing for control)
- Magnetic entropy change calculated from magnetization measurements
- Adiabatic temperature change measured in a custom made set-up

MCE response

Experimental

Experimental

MCE response

Field dependence of MCE

Experimental

-Real ---Ideal (2/3)

μ₀Η (T)

--- Ideal (2/5)

10

Experimental

High field slope: n=2/5 (tricritical) for x=1.65

V. Franco, J.Y. Law, A. Conde, V. Bravander, D. Y. Karpenkov, I. Radulov, K. Skokov, and O. Gutfleisch, J. Phys D: Appl. Phys. 50 (2017) 414004.

MCE in Nanomaterials: a qualitatively different behavior

1D

3D

An ensemble of single domain nanoparticles

$$S_M = \int_{\Omega}^{H} \left(\frac{\partial M}{\partial T}\right)_{H} dF$$

Combined direct and inverse MCE

V. Franco, K.R. Pirota, V.M. Prida, A.M.J.C. Neto, A. Conde, M. Knobel, B. Hernando, M. Vazquez, Phys. Rev. B 77 (2008) 104434

Self assembled array of nanowires

V. Franco, K.R. Pirota, V.M. Prida, A.M.J.C. Neto, A. Conde, M. Knobel, B. Hernando, M. Vazquez, Phys. Rev. B 77 (2008) 104434

V. Franco, K.R. Pirota, V.M. Prida, A.M.J.C. Neto, A. Conde, M. Knobel, B. Hernando, M. Vazquez, Phys. Rev. B 77 (2008) 104434
MCE in Nanocrystalline alloys: Not as good as initially expected

Nanocrystallization of Mo-Finemet

Smaller values of the coercivity peak \rightarrow More reduced dipolar interactions

V. Franco, J.S. Blázquez, C.F. Conde, A. Conde, Appl. Phys. Lett. 88 (2006) 042505

MCE of nanocrystalline Mo-Finemet

- SPM better than paramagnets
- The peak is broadened due to different T_c (sum rule)

RC does not increase V. Franco, J.S. Blázquez, C.F. Conde, A. Conde, Appl. Phys. Lett. 88 (2006) 042505

MCE in Multiphase materials: is there a way of increasing RC?

Non-interacting composite (calculations)

Non-interacting composite (calculations)

 $\Delta S_{M}(x,T,H_{\max}) = x \Delta S_{M,A} + (1-x) \Delta S_{M,B}$

Non-interacting composite (calculations)

$$\Delta S_{M}(x,T,H_{\max}) = x \Delta S_{M,A} + (1-x) \Delta S_{M,B}$$

Improvement of RC

R. Caballero-Flores, V. Franco, A. Conde[,] K. E. Knipling, and M. A. Willard. Appl. Phys. Lett. 98 (2011) 102505

- If phases have very distant T_c, RC diminishes
 - There exists $\Delta T_{C,opt}$
- The majority phase should have the largest T_C (x_{opt}>0.5)
- Improvements of RC as large as 83% can be obtained
- Optimal values are dependent on H_{max}

RC of composite: Comparison with experiments

- Is there a shift in the data?
- Do interactions between phases play a role?

Fe_{88-2x}Co_xNi_xZr₇B₄Cu₁

S.C. Paticopoulos, R. Caballero-Flores, V. Franco, J. S. Blázquez, A. Conde, K. E. Knipling, M. A. Willard. Solid State Comm. 152 (2012) 1590

Model material

- Each phase $H^{\frac{1}{\gamma}} = a_i (T T_{Ci}) M^{\frac{1}{\gamma}} + b_i M^{\frac{1}{\beta} + \frac{1}{\gamma}}$
- Composite $M = xM_A + (1-x)M_B$
- Interactions (mean field) $H_{eff} = H + \lambda M^{\dagger}$
- ΔS_M calculated from Maxwell relation

Influence of interactions

- Peak temperatures are shifted with increasing interaction strength
- Table-like character is enhanced

RCI

$\lambda = 0 \text{ g/cm}^3$

$\lambda = 100 \text{ g/cm}^3$

 $\lambda = 0 \text{ g/cm}^3$

 $\lambda = 100 \text{ g/cm}^3$

- There is no qualitative change of the curves due to interactions
- There is a shift of x_{opt} to lower values

Comparison with experiments

- The shift found experimentally can be ascribed to interactions between phases
- λ≈50 g/cm³
- Equivalent to fields between 0.4 T and 0.1 T between T_c's

Multilayered structures

A way to control the field dependence of MCE

our reference: Single phase materials

Bulk Gd sample

Field dependence of ΔS_M

 $\Delta S_M \propto H^n$

$$n = \frac{d \ln |\Delta S_M|}{d \ln H}$$

• T < C: n=1
• T >>T_C: n=2
• T=T_C:
$$n = 1 + \frac{1}{\delta} \left(1 - \frac{1}{\beta}\right)$$

 The field dependence is the lowest when the MCE signal is the largest

• Deviations from the power law at low fields due to non-saturation

our Goal: To increase the field dependence at the peak VIa nanostructuring?

Electrodeposited samples. NiCu alloys

х3

Fabrication parameters

Thermomagnetic curves

Magnetic entropy change

- Peaks are broadened due to the distribution of T_c's
- Longer deposition times enhances this effect
- Overlapping of the different peaks from the different phases

R. Caballero-Flores, V. Franco, A. Conde, L.F. Kiss, L. Péter, I. Bakonyi Journal of Nanoscience and Nanotechnology 12 (2012) 7432

Field dependece at the peak

A linear field dependence of the peak is achieved

R. Caballero-Flores, V. Franco, A. Conde, L.F. Kiss, L. Péter, I. Bakonyi Journal of Nanoscience and Nanotechnology 12 (2012) 7432

Field dependence in an extended T range

R. Caballero-Flores, V. Franco, A. Conde, L.F. Kiss, L. Péter, I. Bakonyi Journal of Nanoscience and Nanotechnology 12 (2012) 7432

Field dependence in an extended T range

R. Caballero-Flores, V. Franco, A. Conde, L.F. Kiss, L. Péter, I. Bakonyi Journal of Nanoscience and Nanotechnology 12 (2012) 7432

Field dependence of n

Difference with bulk composites (H independent)

Can we achieve something similar without compositional gradients?

Sputtered Gd/Ti multilayers: Finite size scaling

A.V. Svalov et al., Solid State Phenomena 168-169 (2011) 281

D. Doblas, V. Franco, A. Conde, A.V. Svalov, G.V. Kurlyandskaya, Materials and Desing 114 (2017) 214

D. Doblas, V. Franco, A. Conde, A.V. Svalov, G.V. Kurlyandskaya, Materials and Desing 114 (2017) 214

D. Doblas, V. Franco, A. Conde, A.V. Svalov, G.V. Kurlyandskaya, Materials and Desing 114 (2017) 214

D. Doblas, V. Franco, A. Conde, A.V. Svalov, G.V. Kurlyandskaya, Materials and Desing 114 (2017) 214

Conclusions

MCE is a promising alterative for energy efficient refrigeration It can be used to characterize phase transitions For SOPT materials, there is an universal curve for MCE The order of the phase transition can be determined quantitatively **T-FORC gives valuable information about FOPT materials** There are alternative applications of MCE Nanomaterials for MCE are less studied than bulk \rightarrow interesting science
Acknowledgements

Sevilla University

IEEE Magnetics Society

Non-Crystalline Solids group

Numerous collaborators worldwide (cited)

Funding agencies

Industrial partners

Advice for the young out there

-) Do not trust black boxes (experimental devices/programs)
 - Apply techniques from other fields to your own research
 - Attend as many talks as possible, even outside your field
 - Discuss topics with colleagues from other areas
- Network with researchers, use mentoring possibilities...