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a b s t r a c t

The detailed procedure for constructing the recently proposed phenomenological universal

curve for the magnetic entropy change is presented, together with the exponents which

control the field dependence of the different magnetocaloric-related magnitudes. Practical

applications of the universal curve are also outlined: as a simple screening procedure of the

performance of materials, as a method for making extrapolations to temperatures or fields

not available in the laboratory, for the reduction of the experimental noise, for correcting

the influence of non-saturating conditions, or as a way to eliminate the contribution of

minority magnetic phases, among others.

ª 2009 Elsevier Ltd and IIR. All rights reserved.
Lois d’échelle gouvernant l’effet magnétocalorique des
transitions de phase de seconde ordre: de la physique aux
applications permettant de caractériser les matériaux
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1. Introduction

The search for energy efficient technologies for developing

new refrigerator appliances has made the magnetocaloric

effect a field of current scientific interest (Tishin, 1999, 2007;
fax: þ34 954552870.
).
er Ltd and IIR. All rights
Gschneidner and Pecharsky, 2000; Tishin and Spichkin, 2003;

Brück, 2005, 2008). Together with their increased perfor-

mance, it is expected that magnetic refrigerators will have

a more reduced environmental impact when compared with

those based on the gas compression–expansion cycle, as they
reserved.
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Nomenclature

DSM magnetic entropy change (J kg�1 K�1)

DS0M normalized magnetic entropy change

DSpk
M peak magnetic entropy change (J kg�1 K�1)

T temperature (K)

Tr reference temperature (K)

TC Curie temperature (K)

Tpk temperature of the peak entropy change (K)

q reduced temperature

H magnetic field (T)

M magnetization (emu g�1)

n exponent of the field dependence of DSM

d critical exponent

b critical exponent

D critical exponent

a critical exponent

g critical exponent

a parameter of the Arrott–Noakes equation of state

ðg1=gcm�3=gK�1Þ
b parameter of the Arrott–Noakes equation of state

ðg1=gþ1=bcm�3=gemu�1=bÞ
aM scaling factor of DSM (J kg�1 K�1)

Ms spontaneous magnetization (emu g�1)

Mmax maximum magnetization (emu g�1)

s scaling function of DSM

RC refrigerant capacity (J kg�1)

RCFWHM refrigerant capacity calculated as DSpk
M times the

full width at half maximum (J kg�1)
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do not involve ozone-depleting or green house effect related

gases.

The magnetocaloric effect is associated to a large change in

magnetization close to working temperature of the refrigerant

material. Therefore, magnetic refrigeration at low tempera-

tures relied on paramagnetic salts, as their magnetization

increase remarkably when approaching 0 K. However, for

applications at temperatures close to room temperature,

a different approach had to be found: the existence of a phase

transition in the material close to the working temperature

would produce the required abrupt change in magnetization.

From the physical point of view, magnetic refrigerant mate-

rials can be classified by the type of phase transition that they

undergo. It can be a second order magnetic phase transition

(like the ferro-paramagnetic transition of a ferromagnetic

material at its Curie temperature), which is characterized by

the lack of thermal and magnetic hysteresis, and in which the

magnetization decreases continuously to zero (a second order

phase transition implies a continuous change in the first

derivative of the Gibbs free energy and a discontinuous

change in the second derivative of the same) (Zemansky and

Dittman, 1996). Pure Gd is a paradigmatic example of

a magnetic refrigerant undergoing a phase transition of this

kind. But phase transitions can also be of the first order type,

in which the first derivative of the Gibbs free energy is

discontinuous. Therefore, magnetization shows an abrupt

change at the transition temperature, usually associated to

a magneto-structural phase transition, giving rise to the giant

magnetocaloric effect (GMCE), being GdSiGe the typical case of

this kind of magnetic refrigerant materials. However,

although the large abrupt change in magnetization causes

a correspondingly giant magnetic entropy change, this

appears at the cost of thermal and magnetic hysteresis, which

should be avoided in order to be able to apply these materials

in refrigerators appliances.

The description of the second order magnetic phase tran-

sitions in the environment of the critical temperature can be

done by using the critical exponents (Stanley, 1999), i.e. by

expressing the magnitudes under study as a power law of the

relevant magnitude. In a magnetic system, the most relevant

critical exponents correspond to the temperature dependence
of the spontaneous magnetization at zero field (MfðTC � TÞb,

where TC is the Curie temperature and T< TC), and to the field

dependence of magnetization at the Curie temperature

(MfH1=d). There exist relationships which allow obtaining

other critical exponents, like bþ g ¼ bd, D ¼ bd and

1� a ¼ bþ D� 1. Depending on the kind of material, these

critical exponents would take certain values and all materials

which have the same set of critical exponents belong to the

same universality class, following therefore the same power

laws in the environment of the phase transition.

The study of the field dependence of magnetocaloric

response of the material is also a field of increasing research

interest (Tishin et al., 2007; Arora et al., 2007). From a funda-

mental point of view, an understanding of this field depen-

dence for different types of materials can give further clues on

how to improve the performance of refrigerant materials for

the magnetic field range employed in actual refrigerators

(generally 10–20 kOe), which would be a major breakthrough

for the design of eventually domestic appliances. From

a practical point of view, the knowledge of the laws governing

the field dependence of the magnetic entropy change ðDSMÞ
can provide tools for making plausible extrapolations to

experimental conditions not available in some laboratories.

Reliable tools for extrapolating the measured curves in the

magnetic field axis could be a help for simplifying the identi-

fication of potential magnetic refrigerant materials.

A deep understanding of the field dependence of DSM goes

through the modelization of the magnetocaloric response of

the materials, which can be approached in different ways.

Some authors develop first principles models for particular

materials, which have a strong predictive power but have to

be tailored for each particular alloy (Paudyal et al., 2007).

Thermodynamical models, as they contain less specific

information for the material under study, can be regarded as

more general (in the sense that it can be extended to different

types of materials in an easier way), but usually this approach

has been limited to mean field models (Amaral and Amaral,

2004). However, when studying the field dependence of the

magnetic entropy change in materials with a second order

magnetic phase transition, serious discrepancies between the

predictions of the mean field approach (Oesterreicher and
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Parker, 1984) and the experimental data (Franco et al., 2006a,

b) were found. Nevertheless, it has been recently shown that

there exists a universal curve for the field dependence of the

magnetic entropy change in materials with a second

order phase transition, which can be constructed phenome-

nologically without knowing the critical exponents of the

material or its equation of state and which is not restricted to

the mean field case. This phenomenological procedure has

been successfully applied to different families of soft

magnetic amorphous alloys (Franco et al., 2006c, 2007a) (for

which it was initially developed) and subsequently extended

to rare earth based crystalline materials (Franco et al., 2007b,

2009a; Dong et al., 2008).

The purpose of this work is to give a detailed overview of

the procedure to construct this phenomenological universal

curve, showing also an alternative construction which does

not require a detailed knowledge of the experimental data at

the peak entropy change. A theoretical justification for the

existence of the universal curve and of the validity of this

phenomenological procedure will also be overviewed. We will

focus our attention on practical applications of this universal

curve: (1) to make extrapolations up to fields or temperatures

which are not available in the laboratory, (2) to detect the

existence of overlapping magnetic phenomena, and (3) to

enhance the resolution of the measurements close to the

temperature of the peak, being a procedure to reduce the noise

in the measurements without distorting the shape of the

peak. Nevertheless, as real samples depart from the ideal

cases contemplated in the theory, this originates some limit

cases to the applicability of this universal curve. By studying

materials with some magnetic impurity phases in them, or

situations in which the sample does not reach technical

saturation, a modified universal curve can be constructed,

adding new practical functionality to the method, like the
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similar values of the critical exponents; lower: phenomenologica
extraction of the information arising from the main magnetic

phase, eliminating that coming from the minority impurity

phase, or the ability to compare the results of samples with

different (or even unknown) shapes.
2. Phenomenological universal curve

The virtue of the phenomenological universal curve is that

either if a single magnetic material is measured up to different

maximum applied fields, or if different materials with similar

values of their critical exponents (essentially, but not limited

to, alloys of the same compositional series), their DSMðH;TÞ
curves can be rescaled onto a single curve which does not

depend on field and in which the different temperature

dependencies of the different alloys are unified (Fig. 1).

The phenomenological procedure for the construction of

this curve is shown in Fig. 2 with the help of simulated data for

a mean field model calculated for different maximum applied

fields. The basic assumption of the method is that if there is

a universal curve, equivalent points of the different experi-

mental curves should collapse onto the same point of the

universal curve. Therefore, the key is to identify which are the

equivalent points of the different curves for different fields. As

there is no doubt that the peaks (which in the mean field case

coincide at the Curie temperature, TC) should be in equivalent

conditions, we can assume that points which are at a certain

level with respect to the peak are also in equivalent magnetic

states. The temperatures of these points, which are marked by

crosses in Fig. 2, will be denoted as reference temperatures Tr,

and their identification constitutes the first step of the

procedure. The value of the factor selected for this identifi-

cation is arbitrary, not affecting the procedure (in the case of

Fig. 2, the choice has been DSMðTrÞ ¼ 0:7DSpk
M ). The second step
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l universal curve corresponding to these experimental data.
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i n t e r n a t i o n a l j o u r n a l o f r e f r i g e r a t i o n 3 3 ( 2 0 1 0 ) 4 6 5 – 4 7 3468
is the normalization of the curves with respect to their

maximum. Finally, the temperature axis is rescaled in such

a way that the reference temperatures are all at q ¼ 1 by using

q ¼ ðT� TCÞ=ðTr � TCÞ (1)

It is therefore shown that by imposing the position of two

points of each of the curves (those at TC and at Tr), which

implies three free parameters, the whole curve collapses in

a single universal curve. In the case that the critical exponents

of the material are different, i.e. the material is from

a different universality class, the shape of the curve will be

altered. Most notably, the position of the peak will be dis-

placed with respect to TC. However, it has been shown that

using either TC or Tpk in Eq. (1) does not alter the construction

of the universal curve (Franco et al., 2009b).
3. Field dependence of DSM

It can be assumed that the field dependence of the magnetic

entropy follows a power law of the field:

DSMfHn (2)

with an exponent which depends on temperature and field

which can be locally calculated as:

n ¼ dlnjDSMj
dln H

(3)

Fig. 3 shows, for a mean field model, the typical evolution of

the n(T ) curves calculated for different values of the
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maximum applied field. At low temperatures, well below TC, n

has a value which tends to 1, which indicates that although

the magnetization curves depend on temperature at these

temperatures, this dependence is essentially field indepen-

dent. At temperatures well above TC, n tends to 2 as a conse-

quence of the Curie–Weiss law. At T¼ TC, n has a minimum.

For the mean field case n(TC)¼ 2/3, as predicted by

Oesterreicher and Parker (1984). However, for any other case,

the value of the minimum is different from that and is related

to the critical exponents of the material (Franco et al., 2006c):

nðT ¼ TCÞ ¼ 1þ 1=dð1� 1=bÞ ¼ ð1� aÞ=D (4)

There were experimental evidences that the values of n also

collapse when plotted against the same rescaled temperature

axis for which the normalized values of DSM collapse (Franco

et al., 2007c, d). This allows for an alternative construction of

the universal curve, which does not rely on the magnitude of

DSpk
M and therefore is useful when data close to the peak are

not dense enough. The procedure consists in identifying the

reference temperatures as those which have a certain value of

n. In Fig. 3 this value has been arbitrarily selected as n(Tr)¼ 1.5

and is marked as a dashed line in the n(T ) curves. Once the

reference temperatures are selected, the rescaled temperature

axis is constructed using Eq. (1) and the normalization of the

DSM curves can either be done using DSpk
M , as indicated in the

previous section, or as DS0M ¼ DSM=DSMðTrÞ. This latter method

has been used in Fig. 3.

It is worth mentioning that when the critical exponents of

the material are not of the mean field case (i.e. different from

b ¼ 0:5; g ¼ 1; d ¼ 3), the temperature at which n has its
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minimum does not correspond to TC. As an example Fig. 4

shows the n(T ) curves for a Heisenberg model. It is observed

that there are two temperatures which have the same value of

n: TC and the temperature of the peak entropy change. In

between these two temperatures the minimum of n takes

place. However, while the former temperature is field inde-

pendent, the latter is displaced by field to higher temperatures.
4. Theoretical justification and further field
dependencies

The first attempt to make a formal check of the suitability of

this phenomenological procedure and find the scaling laws for

the different magnetocaloric-related magnitudes may consist

in using a particular magnetic equation of state, which relates

magnetization, temperature and field. As the magnetic

entropy change can be calculated from the derivatives of the

M(H,T ) curves

DSM ¼
Z H

0

�
vM
vT

�
H

dH (5)

the manipulation of the equation of state may lead to the

desired results. In the case of Oesterreicher and Parker (1984),

they chose the description of the system in the paramagnetic

region, assuming a mean field case; in our case (Franco et al.,

2006c), the Arrott–Noakes (1967) equation of state was chosen,

H1=g ¼ aðT� TCÞM1=g þ bMð1=bÞþð1=gÞ (6)

which is valid in the environment of the Curie temperature of

the material. In this case, most of the magnitudes can be

calculated from the magnetization curves without the need of

numerical derivatives (which can be a source of errors close to

the transition temperature):

DSM ¼ �
Z Mmax

Ms

agM
�
aðT� TCÞ þ bM1=b

�g�1
dM (7)

n ¼ H
DSM

d
dH

Z H

0

�
vM
vT

�
H

dH ¼ H
DSM

�
vM
vT

�
H

(8)

vM
vT
¼ �aM

aðT� TCÞð1=gÞ þ bðð1=bÞ þ ð1=gÞÞM1=b
(9)
For the mean field case, these expressions are further

simplified to:

DSM ðmean fieldÞ ¼ �1
2
a
�
M2 �M2

s

�
(10)

nðmean fieldÞ ¼ 2
MH

�
M2 �M2

s

��H
M
þ 2bM2

� (11)

However, it is not necessary to impose any particular equation

of state to justify that there should be a universal curve for the

magnetic entropy change. It is well known that second order

phase transitions scale with field (in the magnetic case, if the

magnetization curves are conveniently plotted, all the M(H,T )

curves should collapse onto a universal curve). Therefore, as

the magnetic entropy change is obtained from the magneti-

zation data though eq. (5), it is logical that the DSMðH;TÞ curves

should also collapse. By assuming a general scaling equation

of state (Franco et al., 2008a), the magnetic entropy change can

be expressed as

DSM=aM ¼ Hð1�aÞ=Ds
�
t=H1=D

�
(12)

where s(x) is a scaling function. Therefore, the check of the

agreement between the phenomenological procedure and

this theoretical development can be made by checking the

scaling of the peak entropy change, and that the reference

temperature should scale with field as 1=D. There are

numerous experimental evidences of the agreement with

theory for both field dependencies (Franco et al., 2006c,

2008a, 2008b, 2009b).

Of particular interest can be the scaling law for the refrig-

erant capacity (RC ). There are several different definitions of

this magnitude in the literature. One is the product of the peak

entropy change times the full width at half maximum of the

peak (RCFWHM); another the area under the DSMðTÞ curve using

the temperatures at half maximum of the peak as the inte-

gration limits (RCArea). Taking into account the scaling of the

peak entropy change and of the reduced temperature axis,

any of these two definitions of RC should scale with field as

1=Dþ ð1� aÞ=D ¼ 1þ 1=d. A good agreement between the

experimental RC data and this scaling law has also been evi-

denced (Franco et al., 2008a). Table 1 summarizes the different

scaling laws for the relevant parameters of the magneto-

caloric curves.



Table 1 – Exponents controlling the field dependence of
different magnitudes related to the magnetocaloric effect
ðmagnitudefHexponentÞ.
Magnitude Exponent

Tr 1=D

Tpk � TC (not mean field) 1=D

Tpk � TC (mean field) 0

DSMðT ¼ TcÞ 1þ 1=dð1� 1=bÞ ¼ ð1� aÞ=D

DSpk
M 1þ 1=dð1� 1=bÞ ¼ ð1� aÞ=D

RCArea or RCFWHM 1þ 1=d

The critical exponents employed have their usual meanings.
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5. Applications of the universal curve

5.1. Extrapolations in temperature/field

From the different possible applications of the universal

curve, probably the most straightforward is the extrapolation

of the data to conditions not available in the laboratory. Fig. 5

shows that the low field DSMðTÞ curve covers the whole

rescaled temperature axis, while for the same number of

points, the larger field data are constrained to a much nar-

rower rescaled temperature range. Therefore, a more detailed

information of the region close to the peak is provided by the

high field curve, while the low field one can be used to

provide extrapolations to higher or lower temperatures for

the high field data. When this is applied to series of alloys, in
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a different span for the low and high field data. Lower: extrapo

a composition outside the available experimental range.
the case that some composition falls outside the available

temperature span, undoing the transformation of the

universal curve to the real (not rescaled) axes can be

a method to extrapolate the data for that composition

(Franco et al., 2007d). In this way, a simple screening of the

performance of a material can be made to assess its suit-

ability for the desired application.
5.2. Enhancement of the resolution of the data

Apart from the more detailed information close to the peak

which can be incorporated into the low field data by using the

universal curve, as indicated in the previous subsection,

a procedure for eliminating excessive noise in the measure-

ments can be developed, without the need of smoothing each

curve (that would be a source of distortions of the shape of the

peak). Fig. 6 shows the addition of 15% peak to peak noise to

the results of a mean field model. By averaging the different

rescaled noisy curves, a less noisy shape is obtained. Once the

transformation to experimental axes is made, it is seen that

the noise level can be strongly reduced and the shape of the

corrected curves resemble those of the theoretical starting

point.
5.3. Multiphase materials

The validity of this phenomenological procedure, i.e. the use

of the scaling equation of state for a particular material, has

the restriction that it should be a single magnetic phase. In the
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case that the sample consists of different magnetic phases,

the construction of the universal curve as exposed in the

previous sections is no longer valid (Franco et al., 2009a), as

can be observed in the deviations of the rescaled curves in the

low temperature range of Fig. 7 for the case of a second order

phase transition LaFeSi sample. However, by using two

reference temperatures for each of the curves, one below and

another above TC, selected as those corresponding to a certain

fraction of the peak (as explained in the original procedure),

and rescaling the temperature axis as:

q ¼
�
�ðT� TCÞ=ðTr1 � TCÞ; T � TC

ðT� TCÞ=ðTr2 � TCÞ; T > TC
(13)
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universal curve with a single reference temperature; upper-righ

collapse of the data using two reference temperatures. The arro

magnetic field.
the temperature environment close to the peak collapses into

a single curve again. Therefore, the existence of a second

magnetic phase, with a transition temperature even well

above the experimental range, can be detected by this non-

collapsing character of the magnetocaloric curves.

The anomalous field dependence of the exponent n can be

qualitatively described by assuming that the sample is

composed of two independent magnetic phases (Franco et al.,

2009a). However, the limitations of this simple approach is

being currently analyzed by using a simpler sample

(Caballero-Flores et al., 2009a).

It has also been shown that the existence of overlapped

magnetic transitions can be more easily detected by analyzing
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0.6

0.8

1.0

1.2

1.4

1.6

1.8

n

θ (1 reference)

1 2

ferences)

10.8Si2.2 sample. Upper-left, failure of constructing the

t: lack of collapse of the values of the exponent n; lower:

ws indicate the evolution of the curves with increasing
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either the field and temperature dependence of n, or the lack

of overlapping of the magnetic entropy change curves (Franco

et al., 2007b). It is expected that by separating the collapsing

and non-collapsing components of the DSMðH;TÞ curves

a procedure for performing deconvolutions will be developed.

5.4. Non-saturating conditions

Another limitation of the universal curve in the original form is

the requirement that the samples should be single domain, i.e.

they should be in a state of technical saturation. If the applied

field is small, or if the demagnetizing factor of the sample

under study is large, the construction of the universal curve

with a single reference temperature is not possible. This can be

seen as a distortion of the field dependence of the DSMðH;TÞ
curves with respect to the predictions of the equation of state.

However, it has recently been shown (Caballero-Flores et al.,

2009b) that the use of two reference temperatures also allows

constructing a curve on which all the experimental data

collapse in the environment of the magnetic entropy change

peak.
6. Conclusions

The recently proposed phenomenological construction of the

universal curve for the magnetocaloric effect has a theoretical

background which relies on the scaling of second order phase

transitions. However, although from a theoretical point of

view obtaining the universal curve requires the knowledge of

the critical exponents of the material and its equation of state

(a situation which is rather unlikely when first going to the

laboratory with a new material), the phenomenological

procedure can be followed without this a priori knowledge.

This opens the possibility of different practical applications of

the universal curve in the characterization of new materials:

as a simple screening procedure of the performance of

materials, as a method for making extrapolations to temper-

atures or fields not available in the laboratory, for the reduc-

tion of the experimental noise, for correcting the influence of

non-saturating conditions, or as a way to eliminate the

contribution of minority magnetic phases.
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