Treatment of Menorrhagia and Irregular Menstruation: Cryo-Fluid Ablation of the Endometrium

Background

- Irregular Menstruation and Menorrhagia is a condition that affects reproductive and premenopausal women, characterized by:
 - Irregular/unpredictable bleeding
 - Extended menstrual periods
 - Heightened intensity of menstrual cycles
- Affects between 15% to 20% of women
- Current therapies are invasive, painful, or have low success rates. They include:
 - Hydrothermal Ablation
 - Mesh Electrode for high frequency ablation
 - Hysterectomy

- A prototype for free flowing cryo-fluid endometrial ablation as a novel treatment was developed by a 2014-2015 senior design team, as shown below:

Project Scope

- Improvement of the prototype to reach target temperature range, -15°C to 0°C, for 2mm endometrial ablation
- Develop a holistic mathematical model that describes the heat transfer between the endometrium of the uterus and the cryo-fluid

Design

- **Pennes Bioheat Equation:**
 \[\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + \omega \rho b c_b (T_a - T) + q''''(r,t) \]
- **Solved in Spherical Coordinates:**
 \[\rho c \frac{\partial T}{\partial t} = k \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \omega \rho b c_b (T_a - T(r,t)) + q''''(r,t) \]

- As the cells transition from living to frozen state, their thermal properties change.
- The table below displays values of key parameters during this transition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_a)</td>
<td>37°C</td>
</tr>
<tr>
<td>(T_f)</td>
<td>1°C</td>
</tr>
<tr>
<td>(q'''')</td>
<td>1 W/cm³</td>
</tr>
<tr>
<td>(\omega)</td>
<td>1 cm³/ºC-s</td>
</tr>
<tr>
<td>(\rho b c_b)</td>
<td>3.5 J/cm³-ºC</td>
</tr>
</tbody>
</table>

- Modifications:
 - 2, 1” layers of EPDM Insulation
 - Polytetrafluoroethylene (PTFE) Piping
 - Valves
 - Pressure Regulation
 - Open system to Closed system

Results

- The target temperature range was achieved and temperatures below that range were also reached.
- A comprehensive model for heat transfer was developed
- Enhancements to the prototype entailed regulatory devices and catheter development.
- Future work includes real tissue modeling to determine viability

Conclusions & Future Work

- **Catheter Development**
 - Realistic sizing
 - Balloon catheter
 - Temperature monitor
 - Removable system

References:

Acknowledgments:

A special thanks to Professor Rudy Krack for his tireless efforts and patience over the course of this project.